Major in Biochemistry

Course Selection Guide

2021/22

Biochemistry Programme

School of Life Sciences

The Chinese University of Hong Kong

*Normal face-to-face arrangement

Table of Contents

Table of contents	Page 2
Study scheme selection guide	Page 3
Background	Page 4
Highlights of Biochemistry Programme	Page 5
Career prospects	Page 7
Contact information	Page 7
Course list of each study path	Page 8
Recommended study paths	Page 8
Course outline	Page 13
BCHE 2000 Frontiers in Biochemistry	Page 13
BCHE 2030 Fundamentals of Biochemistry	Page 16
BCHE 2070 Research Internship	Page 20
BCHE 3030 Methods in Biochemistry	Page 27
BCHE 3040 Proteins and Enzymes	Page 31
BCHE 3050 Molecular Biology	Page 35
BCHE 3070 Recombinant DNA Techniques	Page 37
BCHE 3080 Bioenergetics and Metabolism	Page 39
BCHE 3092 Self-Study Modules in Biochemistry and Professional Development	Page 44
BCHE 3110 Chemical Biology	Page 47
BCHE 3650 Molecular Biology Laboratory	Page 55
BCHE 3730 Analytical Biochemistry Laboratory	Page 58
BCHE 4030 Clinical Biochemistry	Page 62
BCHE 4040 Aspects of Neuroscience	Page 65
BCHE 4060 Basic and Applied Immunology	Page 69
BCHE 4070 Management and Accreditation of Biochemical Laboratory	Page 74
BCHE 4080 Biochemistry for Forensic Sciences	Page 77
BCHE 4090 Biochemistry for Sport and Exercise	Page 81
BCHE 4130 Molecular Endocrinology	Page 86
BCHE 4640 Aspects of Neuroscience Laboratory	Page 89
BCHE 4760 Immunology and Haematology Laboratory	Page 95
BCHE 4830 Medical Biochemistry Laboratory	Page 100
BCHE 4901 Senior Experimental Project I	Page 105
BCHE 4902 Senior Experimental Project II	Page 107
BCHE 4903 Senior Experimental Project III	Page 109
LSCI 4000 Literature Research in Life Sciences	Page 112
LSCI 4911, 4912 & 4913 Group Research in Life Sciences (I - III)	Page 118

Study scheme selection guide

Biochemistry Programme

School of Life Sciences

The Chinese University of Hong Kong

This document tries to give our students an overview of the Biochemistry Programme in the School of Life Sciences (SLS) of CUHK. It is composed of (A) Background of the Biochemistry Programme, (B) Course List and Course Outline and (C) Suggested Study Paths for your career development. Hope you enjoy the studies in Biochemistry Programme.

(A) Background of the Biochemistry Programme:

Biochemistry is a branch of science that investigates the chemical compounds and processes occurring in living organisms at molecular level. The knowledge procured from the study in Biochemistry has found extensive applications in medicine and biotechnology that drastically revolutionize our daily life.

Our programme aims to

- 1) provide concepts and mechanisms of biochemical processes, with emphasis on clinical and biomedical sciences;
- 2) provide training on the latest biochemical technology;
- 3) cultivate the ability of critical thinking, a proactive and responsible attitude and efficient communication skills for high competitiveness in further study and career development.

History:

Biochemistry Department was established in 1971, when the first batch of M.Phil. students was admitted. Prof. Lin MA, the second Vice-President of CUHK, was the Department Head. In 1973, the first batch of M.Phil. students graduated and the Department had admitted the first batch of major undergraduate students via transferring from other departments as United College students. This first batch of undergraduates graduated in 1976. Biochemistry Department is also a founding Department of the Medical School at CUHK. In 2010, Biochemistry Department merged with Biology Department to form the School of Life Sciences under the Faculty of Science.

Study Areas (For more details, please refer to Part (C):

Our curriculum emphasizes on current topics in biochemistry and molecular biology that have scientific, medical and social significance. Major study focuses include genetics and cell biology,

protein and enzymes, bioenergetics and metabolism, methods in biochemistry and molecular biology, and biomedical and health sciences. We also provide a wide range of elective courses for students to attain professional knowledge in specialized disciplines such as clinical biochemistry, immunology, endocrinology, neuroscience, forensic sciences and sport sciences, etc. Our curriculum is also designed to provide experiential learning through self-study modules, laboratory practicals and independent research. Apart from convention teaching in lecture theaters and student laboratory, our programme provides a number of eLearning materials and they can be found in the following website 'http://www.bch.cuhk.edu.hk/learnbiochem/'.

Highlights of Biochemistry Programme:

Biochemistry Programme Mission

- Mission 1: To provide concepts and mechanisms on the molecular basis of life processes and the significance in human activities and health.
- Mission 2: To provide training on the latest biochemical technology.
- Mission 3: To cultivate the ability of critical thinking, a proactive and responsible attitude and efficient communication skills for high competitiveness in further study and career development.

Biochemistry Programme Learning Outcomes (PLOs)

With the Programme mission, graduates of the Biochemistry Programme are expected to achieve the following PLOs:

- PLO1: Understand the core knowledge in biochemistry covering biomolecules, molecular biology, cellular biochemistry, metabolism, bioinformatics, proteins and enzymes and have the opportunity to specialize in a selected area of biochemistry.
- PLO2: Gain the knowledge of the latest biochemical technology in proteins, cell biology and, molecular biology.
- PLO3: Possess skills in designing experiments to test hypothesis, writing research report, applying their knowledge to daily life and developing self-learning capability.
- PLO4: Become all-round competent including the capability to work in a team.
- PLO5: Think critically and analytically.
- PLO6: Commit to ethical professionalism.

Centralized LEARNBIOCHEM e-learning platform

Biochemistry Programme has established a e-learning platform LEARNBIOCHEM with eight modules to enhance teaching and learning. Learning materials including videos of laboratory experiment on common biochemistry principles and techniques, each with interactive quizzes for students to evaluate what they have learned from the video. Recently, we further enriched the platform with materials for flipped classroom activities. There is a "Resources Finder" search function for students to find videos on laboratory techniques by courses, keywords or modules.

The site of this platform is: www.bch.cuhk.edu.hk/learnbiochem.

Diverse curriculum of Biochemistry education

In addition to courses on general and specialized Biochemistry topics, the Biochemistry Programme also emphasizes on experiential and group learning as well as the cultivation of generic skills. Relevant courses offered include BCHE2070 Research Internship, BCHE3092 Self-study Modules in Biochemistry and Professional Development and LSCI 4911, 4912 & 4913 Group Research in Life Sciences (I - III)

Level 1 Academic Advisors

In the BCHE Programme, each student has a Level-1 academic advisor. You can find who is your Level-1 advisor on CUSIS. Your advisor's office address, telephone number and e-mail can be found from the SLS website. You are required to meet your advisor at least once a year. Of course, individual meetings at any time initiated by students are welcome. Your Level-1 advisor can help you in the following areas:

- 1) Providing advice and assistance on academic development, study planning and life adjustment.
- 2) Referring students to other supporting units in the university for assistance.
- 3) Collecting students' feedback to improve curriculum, teaching and learning.

Scholarships offered by Biochemistry Programme

The scholarships and awards were donated by the Biochemistry alumni in recognition of the Biochemistry undergraduate students' outstanding achievement and exceptional performance. All these scholarships as follows are nominated by the Biochemistry programme.

Name of Scholarships / Awards (Amount)	Particular
Prof. C.Y. Lee's Academic Award (HK\$2,000)	For a full-time year one or two undergraduate student majoring in Biochemistry with the highest major GPA during his/her first year of study in major subjects.
Prof. K.K. Ho's Academic Award (HK\$2,000)	For a full-time year two or three undergraduate student majoring in Biochemistry with the highest major GPA during his/her second year of study in major subjects.
Prof. Ma Lin's Academic Award (HK\$2,000)	For a full-time year three or final year undergraduate student majoring in Biochemistry with the highest major GPA during his/her third year of study in major subjects.
Biochemistry Alumni Association Scholarship (HK\$2,000)	A committee member of the Biochemistry Society, CUHK. The student should have the highest GPA during his/her term of service in the committee. (period of the service: from 2 nd term of year 1 to 1 st term of year 2)
Biochemistry Alumni (1977) Award for Distinguished Final Year Research Project (HK\$2,000)	The award will be given to the best final year research project of a full-time final year undergraduate student majoring in Biochemistry.

Financial subsidy for MPhil and PhD in Biochemistry

Biochemistry major students enjoy generous financial subsidy for their postgraduate studies; currently, local students in Hong Kong are waived from the tuition fees for their research-based postgraduate studies. Moreover, MPhil and PhD students receive studentship/fellowship (HK\$ 216,300 per year) from CUHK for two and four years, respectively. Students are also eligible for the application of the

prestigious Hong Kong PhD Fellowship Scheme (HK\$322,800 per year).

Career Prospects (For more details, please see Part (B):

- Nearly half of our graduates pursue postgraduate studies in local or overseas universities.
- About one fifth of our graduates have joined the medical and research laboratories.
- Some other graduates have entered the education, commercials, industrial and government sectors.

Contact Information

Website: <u>www.bch.cuhk.edu.hk/</u> Email: <u>biochemistry@cuhk.edu.hk</u> Tel: 852-3943-6359

Programme Director: Professor Shaw Pang-Chui Office: Room 180, Science Centre, The Chinese University of Hong Kong Email: <u>pcshaw@cuhk.edu.hk</u> Tel: 852-3943-1363

Programme Secretary: Ms. Joanne Sun Office: Room 132, Science Centre, The Chinese University of Hong Kong Email: <u>wysun@cuhk.edu.hk</u> Tel: 852-3943-6359

(B) Course List and Course Outline

Course List of Biochemistry Programme (BCHE Coded)		
Course Code	Course Title	Unit (s)
BCHE2000	Frontiers in Biochemistry	2
BCHE2030	Fundamentals of Biochemistry	3
BCHE2070	Research Internship	2
BCHE3030	Methods in Biochemistry	3
BCHE3040	Proteins and Enzymes	3
BCHE3050	Molecular Biology	2
BCHE3070	Recombinant DNA Techniques	1
BCHE3080	Bioenergetics and Metabolism	3
BCHE3092	Self-study Modules in Biochemistry and Professional Development	3
BCHE3110	Chemical Biology	3
BCHE3650	Molecular Biology and Recombinant DNA Laboratory	2
BCHE3730	Analytical Biochemistry Laboratory	2
BCHE4030	Clinical Biochemistry	3
BCHE4040	Aspects of Neuroscience	3
BCHE4060	Basic and Applied Immunology	3
BCHE4070	Management and Accreditation of Biochemical Laboratory	3
BCHE4080	Biochemistry for Forensic Sciences	2
BCHE4090	Biochemistry for Sport and Exercise	2
BCHE4130	Molecular Endocrinology	3
BCHE4610	Molecular Biology Laboratory	2
BCHE4640	Aspects of Neuroscience Laboratory	2
BCHE4760	Immunology and Haematology Laboratory	2
BCHE4830	Medical Biochemistry Laboratory	2
BCHE4901	Senior Experimental Project I	2
BCHE4902	Senior Experimental Project II	2
BCHE4903	Senior Experimental Project III	2

Suggested study paths with the courses in SLS for different types of career/higher degree studies. This is a recommendation. Students should consider their interest and time-table to choose courses apart from the core requirements

Medical Biochemistry study path

BCHE4030	Clinical Biochemistry
BCHE4040	Aspects of Neuroscience
BCHE4060	Basic and Applied Immunology
BCHE4070	Management and Accreditation of Biochemical Laboratory
BCHE4130	Molecular Endocrinology
BCHE4760	Immunology and Haematology Laboratory
BCHE4830	Medical Biochemistry Laboratory
BIOL3410	General Microbiology
BIOL4310	Human Genetics
ENSC3520	Environmental and Biochemical Toxicology

ENSC3820	Environmental and Biochemical Toxicology Laboratory
FNSC4101/4102	Human Physiology for Nutritional Studies I & II

Environmental Science study path

BCHE2070	Research Internship
BIOL2210	Ecology
BIOL4220	Environmental Biotechnology
BIOL4260	Conservation Biology
ENSC2270	Introduction to Environmental Science
ENSC3520	Environmental and Biochemical Toxicology
ENSC3820	Environmental and Biochemical Toxicology Laboratory
ENSC4250	Environmental Health

Food and Nutritional Science study path

BCHE2070	Research Internship
BCHE4090	Biochemistry for Sport and Exercise
FNSC2002	Nutrition for Health
FNSC3010	Nutrition and Human Development
FNSC3030	Nutritional Biochemistry
FSNC3180	Food Microbiology
FNSC4150	Introduction to Medical Nutrition Therapy
FNSC4101/4102	Human Physiology for Nutritional Studies I & II

STEAM and Innovation study path

BCHE2070	Research Internship	
BCHE3092	Self-study Modules in Biochemistry and Professional Development	
BCHE4070	Management and Accreditation of Biochemical Laboratory	
LSCI 4911, 491	12 & 4913 Group Research in Life Sciences (I - III)	
BMEG2001	Introduction to Biomedical Engineering	
BMEG3102	Bioinformatics	
MBTE3000	Business and Social Aspects of Biotechnology	
MGNT1010	Introduction to Business	
MGNT1020	Principles of Management	
LSCI3000	Synthetic Biology Workshop	
SEEM2460	Introduction to Data Science	
STAT3003	Survey Methods	
Participation more in extra-curricular activities such as iGEM (in School of Life Sciences); iCare		

(http://www.icare.cuhk.edu.hk/) (at CUHK); PI Center (Dare to innovate, Dare to create,

http://www.picentre.cuhk.edu.hk/) (at CUHK) and the College functions to get more fundings, more exposure, experience and awards to enrich your CV.

Suggested Study Paths through Other Courses

(The proposed courses offered by other departments can be used to fulfill their minor programmes. Please see their programme requirements)

Bioinformatics

- BCHE3050 Molecular Biology
- BCHE3070 Recombinant DNA Techniques
- BCHE3650 Molecular Biology and Recombinant DNA Laboratory
- BBMS5200 Technology in Molecular Biology
- BIOL4310 Human Genetics
- BIOL2420 Population Genetics
- BMEG5790 Bioinformatics
- CMBI4201 Genomics and Transcriptomics
- CMBI4202 Proteomics
- CMBI4203 Metabolomics

Biochemical Engineering

BMEG2001	Introduction to Biomedical Engineering
BMEG2011	Biomedical Engineering Laboratory
BMEG3101	Medical Instrumentation and Design
BMEG3102	Bioinformatics
BMEG3430	Biomaterials and Tissue Engineering
BMEG4010	Global Medical Device Regulatory Affairs
BMEG4450	Bionanotechnology
BMEG4510	Biomolecular Engineering
BMEG4520	Cardiovascular Engineering
BMEG4530	Musculoskeletal Tissue Engineering

Chemistry Path

BCHE4080 Biochemistry for Forensic Sciences CHEM2120 Main Group Chemistry CHEM2200 Organic Functional Groups: Structure and Reactivity Thermodynamics and Chemical Equilibrium CHEM2300 CHEM2400 Analytical Chemistry CHEM2408 Analytical Chemistry Laboratory I CHEM2820 Organic Chemistry Laboratory I CHEM2830 Physical Chemistry Laboratory I Instrumental Analysis CHEM3410 Accreditation of Laboratory Tests CHEM3420 Chemical Applications in Forensic Science CHEM4788

Business Administration Path

BCHE2070	Research Internship
BCHE4070	Management and Accreditation of Biochemical Laboratory
MBTE3000	Business and Social Aspects of Biotechnology
MGNT1010	Introduction to Business
MGNT1020	Principles of Management
DSME1035	Fundamentals of Business Economics
MGNT2510	Introduction to International Business
FINA3010	Financial Markets
MKTG3030	Integrated Marketing Communication
CUUIV Entron	an averable and Innervation Minor Dragmonne

CUHK Entrepreneurship and Innovation Minor Programme

(https://rgsntl.rgs.cuhk.edu.hk/aqs_prd_applx/public/handbook/document.aspx?id=1802&tv=T&lang=en)

Education Path

EDUC2120	Principles and Implementation of Curriculum and Instructional Design
EDUC2210	Education and Society in Hong Kong
EDUC2240	Understanding Schooling and Education Policy in Hong Kong
EDUC2312	Child and Adolescent Development
EDUC3260	Teacher Development and Leadership
EDUC3311	Psychology Applied to Learning and Teaching
EDUC4130	Information Technology in Education

Geography Path

GRMD1402	Global Change and Environmental Sustainability
GRMD2209	Physical Geology
GRMD2221	Weather and Climate
GRMD3203	Urban Environmental Problems
GRMD3404	Natural Hazards and Human Responses

Management

- MGNT1010Introduction to BusinessMGNT1020Principles of ManagementMGNT2040Human Resource Management
- MGNT3010 Organizational Behaviour
- MGNT4080 Managerial Skills for Modern Managers
- MGNT4090 Technology and Innovation Management

Psychology Path

PSYC1000	General Psychology
PSYC2010	Introduction to Statistics

Physiological Psychology
Neuropsychology
Special Topics in Clinical and Health Psychology
Health Psychology

Sport Science Path

PHPC2007	Nutrition and Health
PHPC2016	Theories and Concepts of Health Behaviours
SPED2520	Functional Human Anatomy and Sports Injuries
SPED2540	Introduction to Exercise Physiology
SPED3550	Physiology of Human Performance
SPED3820	Introduction to Exercise and Sports Psychology
SPED4560	Physical Fitness Appraisal and Exercise Prescription

Popular courses for Medical Biochemistry Study Path

timetable 1 st term (maximum 18 units) CHEM1070, ELTU1001 or 1002, LSCI1002, MATH1520, UGFH1000 or UGFN1000 2 nd term (maximum 18 units) BCHE2000, CHEM1280, CHLT1100, ENGG1000, STAT1012, UGFH1000 or UGFN1000 Summer term (3 units) UGFH1000 or UGFN1000 1 st term (maximum 18 units) BCHE2030, BIOL2120, LSCI2002, LSCI2003, ELTU2018 or 2019
CHEM1070, ELTU1001 or 1002, LSCI1002, MATH1520, UGFH1000 or UGFN1000 2 nd term (maximum 18 units) BCHE2000, CHEM1280, CHLT1100, ENGG1000, STAT1012, UGFH1000 or UGFN1000 Summer term (3 units) UGFH1000 or UGFN1000 1 st term (maximum 18 units)
UGFN1000 2 nd term (maximum 18 units) BCHE2000, CHEM1280, CHLT1100, ENGG1000, STAT1012, UGFH1000 or UGFN1000 Summer term (3 units) UGFH1000 or UGFN1000 1 st term (maximum 18 units)
BCHE2000, CHEM1280, CHLT1100, ENGG1000, STAT1012, UGFH1000 or UGFN1000 Summer term (3 units) UGFH1000 or UGFN1000 1 st term (maximum 18 units)
UGFH1000 or UGFN1000 1 st term (maximum 18 units)
Beriez030, Biol2120, ESC12002, ESC12003, EE102018 01 2019
2 nd term (maximum 18 units) BCHE3050, 3070, 3650, BIOL2313, 2410, CHLT1200
1 st term (maximum 18 units) BCHE3040, 3080, 3092, 4040, 4080, BIOL3630, ELTU3018
2 nd term (maximum 18 units) BCHE3030, 3730, 4130, 4090, BIOL4310, ENSC3520
Summer term (2 units) Major Elective(s): BCHE4901 or LSCI4911
1 st term (maximum 18 units) BCHE4060, 4640, 4760, BIOL3410 BCHE4902 or LSCI4912 or LSCI4000
2 nd term (maximum 18 units) BCHE4030, 4830 BCHE4903 or LSCI4913 or LSCI4000

*In addition to the popular general education courses, students should also take other University General Education (9 units) & College General Education courses (6 units). The total units for General Education are 21 units.

**Students should also take one Physical Education course (1 unit) in both Term 1 and Term 2 during their first year of attendance. The total units for Physical Education are 2 units.

(C) Course Outlines

BCHE2000 Frontiers in Biochemistry (2018-19, Term2)

Wed 9:30 am - 11:15 am (W2-3); L1 Science Centre

COURSE DESCRIPTION

This course presents the latest developments and advancements in biochemistry and molecular biology. It aims to alert students to the trends and recent breakthroughs in biochemical and biomedical research. Lecture topics are determined by individual teaching staffs of the course. They vary every year to reflect the latest development in the field of biochemical research. The lecture topics can be briefly classified into three major areas: New Research Areas (e.g. synthetic biology), Cellular Biochemistry (e.g. stem cells), and Biochemistry of Diseases (e.g. cancer).

LEARNING OUTCOME

Students are expected to understand recent developments in research fields related to Biochemistry and Molecular Biology. Basic and novel concepts of various topics and their future developments will be introduced and elaborated by teachers. Students are expected to read the recommended readings provided for each lecture topic, and to search for additional information in the library and online to study on their own.

Wk.	Date	Торіс	Торіс	Teacher
		no.		
1	Jan. 9	1	Overview of the course; Synthetic Life	СКN; КМС
2	Jan. 16	2	Biochemistry: Past, Present and Future	PCS
3	Jan. 23	3	Non-coding RNA in Development	HLH
4	Jan. 30	4	Modulation of gene expression: RNAi vs. CRISPR	CKN
5	Feb. 6		Lunar New Year Vacation	
6	Feb. 13	5	Stem Cell Research	SYT
7	Feb. 20		General Discussion (Topics 1-5)	PCS/KMC/CKN/HLH/SYT
8	Feb. 27		Mid-term Examination (Topics 2-5)	-
9	Mar. 6	6	Etiology of Cancer	SKK
10	Mar. 13	7	Cancer Treatment	WPF
11	Mar. 20	8	Metabolic Disease	HKN
12	Mar. 27	9	Structural Biology and Drug Discovery	WNA
13	Apr. 3	-	Study week	-
14	Apr. 10	10	Guest lecture – Depression: Pharmacology, Drug	Dr. Stephen Wong
			Discover and Therapy	
15	Apr. 17		General Discussion (Topics 6-10)	WNA/HKN/SKK/WPF

CLASS SCHEDULE

TEACHERS' INFORMATION

Teacher Name		Office	Tel.	Email
Prof. Jacky CK NGO (Course coordinator)	СКМ	SCE E403	3943 6346	jackyngo@cuhk.edu.hk
Prof. Shannon AU	WNA	SC 178	3943 4170	shannon-au@cuhk.edu.hk
Prof. KM CHAN	КМС	SC 184	3943 4420	kingchan@cuhk.edu.hk
Prof. WP FONG	WPF	MMW 608	3943 6868	wpfong@cuhk.edu.hk
Prof. Jerome HL HUI	HLH	MMW 503C	3943 6316	jeromehui@cuhk.edu.hk
Prof. SK KONG	SKK	MMW 609	3943 6799	skkong@cuhk.edu.hk
Dr. Patrick HK NGAI	HKN	MMW 507B	3943 4359	hkngai@cuhk.edu.hk
Prof. PC SHAW	PCS	SC 180	3943 1363	pcshaw@cuhk.edu.hk

Prof. Faye SY TSANG	SYT	MMW 607	3943 1020	fayetsang@cuhk.edu.hk
Dr. Stephen Wong				

ASSESSMENT SCHEME

9.09% (10 marks)	Group poster presentation: Topic 1
4.55% (5 marks)	On-line exercise: <i>Topic 2</i>
4.55% (5 marks)	On-line exercise: <i>Bioethics</i>
36.36% (40 marks)	Mid-term exam (MCQs + short Qs): covering Topics: 2-5
45.45% (50 marks)	Final exam (MCQs + short Qs): covering Topics 6-10

<u>REFERENCES</u> Reading materials will be given by individual teachers.

GRADE DESCRIPTOR (for reference only)

Grade A :

Demonstrates a deep understanding of the latest developments and advancements in biochemistry and molecular biology, in particular their underlying principles and implications in health and diseases.

Demonstrate the ability to synthesize and apply the subject matter learnt in the course, to novel situations and/or in novel ways, in a manner that would surpass the normal expectation at this level. Has the ability to express the synthesis of ideas or application in a clear and cogent manner.

Grade A- :

Demonstrates high level of understanding of the latest developments and advancements in biochemistry and molecular biology, in particular their underlying principles and implications in health and diseases.

Demonstrate the ability to state and apply the subject matter learnt in the course to familiar and standard situations in a manner that is logical and comprehensive.

Has the ability to express the knowledge or application with clarity.

Grade B :

Demonstrate a competent grasp of the latest developments and advancements in biochemistry and molecular biology, in particular their underlying principles and implications in health and diseases. Demonstrates the ability to state and partially apply the subject matter learnt in the course to most (but not all) familiar and standard situations in a manner that is usually logically persuasive. Has the ability to express the knowledge or application in a satisfactory and unambiguous way.

Grade C :

Demonstrate a basic understanding of the latest developments and advancements in biochemistry and molecular biology, in particular their underlying principles and implications in health and diseases.

Demonstrates the ability to state and apply the subject matter learnt in the course to most (but not all) familiar and standard situations in a manner that is not incorrect but is somewhat fragmented. Has the ability to express the separate pieces of knowledge in an unambiguous way.

Grade D :

Demonstrate a simplistic knowledge of the latest developments and advancements in biochemistry and molecular biology, in particular their underlying principles and implications in health and diseases.

Demonstrates the ability to state and sometimes apply the subject matter learnt in the course to some simple and familiar situations in a manner that is broadly correct in its essentials. Has the ability to state the knowledge or application in simple terms.

Grade F :

Demonstrate an incomplete or incorrect knowledge of the latest developments and advancements in biochemistry and molecular biology, in particular their underlying principles and implications in

IMPORTANT:

Academic honesty and plagiarism

The University adopts a policy of zero tolerance on plagiarism. Information regarding the academic honesty and plagiarism policy in the University is located at http://www.cuhk.edu.hk/policy/academichonesty/.

Guideline about plagiarism

Any assignment (i.e., project, essay, or paper) that shows evidence of plagiarism will be marked down severely. In simple terms, plagiarism is copying passages and/or ideas from other sources without referencing those sources. Moreover, when you report someone else's ideas/findings you must put it in your own words and not merely copy full sentences or parts of sentences from the source article. It is your responsibility as a scholar-in-training to cite the ideas and work of others correctly.

If you commit plagiarism in an assignment, and it is your first offence in the course, the penalty will range from a minimum of a single letter grade reduction in score on the assignment to a maximum of failure on the assignment. A second offence within the same course will result in a minimum penalty of a single letter grade reduction in the course grade to a maximum penalty of course failure. The specific penalty applied is up to the discretion of the professor. In all cases of plagiarism, the student's name will be recorded in a central database maintained by the general office. If a student is referred for plagiarism in more than one course, or more than one instance in the same course, the student's case will be forwarded to the university administration for follow-up action.

Students submitting assignment done by third party is also a serious misconduct and regarded as fraud or academic dishonesty. The updated Procedures are available at the University's website "Honesty in Academic Work: A Guide for Students and Teachers" (http://www.cuhk.edu.hk/policy/academichonesty/).

<u>REMINDER</u>: Students please note the aforementioned marking scheme, grade descriptors, academic honesty principle and the university penalty guideline are all applicable to this course. General university regulations are available online: <u>http://www.res.cuhk.edu.hk/en-gb/general-information/university-regulations</u>; please check them out.

BCHE2030 Fundamentals of Biochemistry (2018-19, Term 1)

1. Description

The course introduces the fundamental principles of biochemistry that are needed for all life science disciplines. It will cover the importance of water, structure-function relationships of biomolecules (including amino acids, proteins, carbohydrates, lipids and nucleic acids), the biochemical logic of the metabolic pathways, and an overview of metabolism with emphasis on how biomolecules are interconverting with each other.

2. Contents/FundamentalConcepts

Торіс	Contents/FundamentalConcepts
	Molecular structure of water
Water – the medium of life	Weak interactions in aqueous system
	Acid/base equilibrium and buffers
	Monosaccharides
	Disaccharides and oligosaccharides
Carbohydrates	Polysaccharides
	Glycoconjugates
	Biological information and the sugar code
	Storage lipids
Lipids	Membranelipids
	Other lipids
	Nucleotide
Nucleotide and nucleic acids	Nucleic acids
	Other functions of nucleotides
	Amino acid – basic building block of proteins
	Peptide bond
Proteins	Primary, secondary, tertiary and quaternary protein structures
	Hemoglobin as an example to illustrate how proteins function
Thermodynamics – to predict if a	Free energy as a measure of a reaction's tendency to proceed
reaction will proceed	spontaneously
	Concepts of 'high-energy' compounds and coupled reactions
Energy and Matters	Flow of energy and cycling of carbon/nitrogen in the biosphere
	Energy relationship between catabolic and anabolic pathway
	Oxidation of carbon fuels as a major source of cellular energy
	NAD(P)H/FADH2 as universal electron carriers
	ATP is synthesized by proton gradients across membrane
	generated by transferring electrons to oxygen
	The light reaction of photosynthesis generates both proton
	gradients and reducing equivalents
	The dark reaction of photosynthesis uses the reducing power
	generated for biosynthesis of sugar from CO2

Chemical logic of biochemical reactions – to predict how a reaction should proceed	Electronegativity and polarity of covalent bond Different types of biochemical reactions
Enzyme catalysis – to predict how fast a reaction could proceed	Enzymes affect reaction rates but not equilibria Enzymes increase reaction rates by lowering the activation free energy Concepts of transition-state complementarity Why biochemical reaction is stereospecific? Basic enzyme kinetics Enzymes are good target for drug design
Glycolysis	Reactions in the glycolytic pathway are used as examples to illustrate the recurring motifs in metabolic pathway
Vitamins	Vitamins are often co-factors in enzyme catalysis
Overviews of metabolism	Convergent catabolism Divergent anabolism Cyclic pathway Regulatory strategy Compartmentation of metabolic pathways

3. Learning Outcomes

To appreciate the importance of water in living organism.

To understand the structure-function relationships of different types of biomolecules.

To understand the chemical logic (thermodynamics, mechanism, and catalysis) behind biochemical reactions.

To have an overview of metabolic pathways, and appreciate how biomolecules are interconverting with each other.

4. Assessment Scheme

Mid-term exam.30%Final exam.50%Assignment20%

5. Textbooks

Nelson & Cox, Lehninger Principles of Biochemistry, W.H. Freeman Berg, Tymoczko & Stryer, Biochemistry, W.H. Freeman

6. Lecturers

Prof. WN Au (course co-ordinator), SC 178 tel: 3943 4170 email:<u>shannon-au@cuhk.edu.hk</u> Prof. KF Lau, SC 291 tel: 3943 1106 email:<u>kflau@cuhk.edu.hk</u>

7. Course Schedule

Wk.	Date	Торіс	Teacher
1	Sept. 7	Introduction	Prof. KF Lau
2	Sept. 14	Water	Prof. KF Lau
3	Sept. 21	Carbohydrates	Prof. KF Lau
4	Sept. 28	Lipids	Prof. KF Lau
5	Oct. 5	Nucleotide and Nucleic Acids	Prof. KF Lau
6	Oct. 12	Proteins	Prof. WN Au
7	Oct. 19	Protein structure and function	Prof. WN Au
8	Oct. 26 (F1-F2)	Mid-term Examination	Prof. KF Lau
8	Oct. 26 (F3)	Protein structure and function	Prof. WN Au
9	Nov. 2	Thermodynamics, Energy and Matters	Prof. WN Au
10	Nov. 9	Enzyme Catalysis	Prof. WN Au
11	Nov. 16	Chemical Logic of Biochemical Reactions	Prof. WN Au
12	Nov. 23	Glycolysis, Vitamins	Prof. WN Au
13	Nov. 30	Overview of Metabolism	Prof. WN Au

8:30 am – 11:15 am (F1-3); Lee Shau Kee Building (LSK LT6)

BCHE2030 Fundamentals of Biochemistry (2018-19, Term 1) Friday

8. Posting Course Announcements

Pay attention to your CUHK email account for announcements about this course, teachers will send messages to students via the CUHK Blackboard System (http://blackboard.cuhk.edu.hk) and students can view the message automatically in their CU email accounts. The UReply system will be used and multiple choice questions will be discussed to reinforce some basic concepts covered in the lectures.

9. Academic Honesty and plagiarism

The University adopts a policy of zero tolerance to any act of academic dishonesty. Please read the updated *Procedures* at the University's website "Honesty in Academic Work: A Guide for Students and Teachers" (<u>http://www.cuhk.edu.hk/policy/academichonesty/</u>). Please note that students submitting assignment done by third party is also a serious misconduct and regarded as fraud or academic dishonesty.

REMINDER: Students please note the aforementioned marking scheme, grade descriptors, academic honesty principle and the university penalty guideline are all applicable to this course. General university regulations are available

on-line:<u>http://www.res.cuhk.edu.hk/en-gb/general-information/university-regulations;</u>pleasecheck them out.

Grade	Overall course
A	Demonstrates a deep understanding of the importance of water and different biomolecules in living organisms, their structure-function relationship, the chemical logics behind biochemical reactions, and an overview of metabolic pathways. Demonstrate the ability to synthesize and apply the subject matter learnt in the course, to novel situations and/or in novel ways, in a manner that would surpass the normal expectation at this level.
	Has the ability to express the synthesis of ideas or application in a clear and cogent manner.
A-	Demonstrates high level of understanding of the importance of water and different biomolecules in living organisms, their structure-function relationship, the chemical logics behind biochemical reactions, and an overview of metabolic pathways. Demonstrate the ability to state and apply the subject matter learnt in the course to familiar and standard situations in a manner that is logical and comprehensive. Has the ability to express the knowledge or application with clarity.
В	Demonstrate a competent grasp of the key concepts in biochemistry, including the importance of water and different biomolecules in living organisms, their structure-function relationship, the chemical logics behind biochemical reactions, and an overview of metabolic pathways. Demonstrates the ability to state and partially apply the subject matter learnt in the course to most (but not all) familiar and standard situations in a manner that is usually logically persuasive. Has the ability to express the knowledge or application in a satisfactory and unambiguous way.
С	Demonstrate a basic understanding of the importance of water and different biomolecules in living organisms, their structure-function relationship, the chemical logics behind biochemical reactions, and an overview of metabolic pathways. Demonstrates the ability to state and apply the subject matter learnt in the course to most (but not all) familiar and standard situations in a manner that is not incorrect but is somewhat fragmented. Has the ability to express the separate pieces of knowledge in an unambiguous way.
D	Demonstrate a simplistic knowledge of the importance of water and different biomolecules in living organisms, their structure-function relationship, the chemical logics behind biochemical reactions, and an overview of metabolic pathways. Demonstrates the ability to state and sometimes apply the subject matter learnt in the course to some simple and familiar situations in a manner that is broadly correct in its essentials Has the ability to state the knowledge or application in simple terms.
F	Demonstrate an incomplete or incorrect knowledge of the importance of water and different biomolecules in living organisms, their structure-function relationship, the chemical logics behind biochemical reactions, and an overview of metabolic pathways. Unsatisfactory performance on a number of learning outcomes, OR failure to meet specified assessment requirements.

BCHE 2070 Research Internship 2U; STOT

DESCRIPTION

This course is designed to let students gain practical experience in scientific research in a laboratory or biotechnology firm during the summer period or term time. All research or internship projects, locally or overseas, must be approved by the Biochemistry Program, School of Life Sciences.

GUIDELINE

- 1. All DREAM program, SMART program, summer internship students are welcome to take this course.
- 2. This course is available in all terms, students carrying out research work during term time or summer period are most welcome to register.
- 3. All students must have a nomination form signed by a supervisor and approved by the course coordinator to register this course
- 4. Evaluations: Supervisor (40%), panel member 1 (30%) and panel member 2 (30%).
- 5. All students taking this course must submit a brief report up to around 30 pages (double spacing) of the research performed for record and evaluation. All report must be submitted with a signed form obtained from the CUHK VeriGuide system.

LEARNING OUTCOME

After completing the course, students should be able to:

- i. carry out an independent research under supervision by a faculty staff;
- ii. design simple experiments and follow protocols to carry out some biochemical analyses;
- iii. obtain data and carry out data analysis with simple statistics, and
- iv. write a brief scientific report or communication.

Objectives for student development:

- 1. Learn how to integrate basic biochemical techniques to perform some experiments or validate an assay.
- 2. Learn how to collect and read literature in a specific area of research.
- 3. Learn how to design simple experiment, in vitro or in vivo, and carry out the experimental procedure independently.
- 4. Work as a member of the team.
- 5. Learn how to compile or collect data with accuracy and precision.
- 6. Learn how to analyze the data obtained and write a short report to summarize the work done.
- 7. Prepare students to learn time management skills and do independent research for their final year project (Senior Experimental Project)

COURSE SYLLABUS

There is no specific content for this course, which is guided by a supervisor and the project is to be assigned by the supervisor. Summer Interns (including but not limited to DREAM and SMART program in the School of Life Sciences) may take this course but a local supervisor or supervisor from Biochemistry Program has to be assigned in addition to the internship supervisor for marking. Title of the project report must be different from other courses.

Duration (study period)

Students taking this course usually start their experiments in July or early at term start in September and complete the project with a report written for marking by the end of the terms. Deadline of submission of report is at term end.

Job nature

Students may hold a project on testing and purification of a biomolecule, cloning of a gene, detection of a gene mutation, performing PCR assay or ELISA assay, purification of a recombinant protein, developing an assay from modified protocols, doing literature search of patents and help filing a patent application in a patent law firm, doing data mining (*In Silico* analyses), genome or RNASEQ sequence analyses, testing of a drug or toxicant, etc.

Report for evaluation

- 1. The report should include a cover page with the title of the research, followed with a one page abstract (< 250 words), an introduction, materials and methods, results and discussion, acknowledgement, and references.
- 2 Rationale of the study and background information should be covered in the introduction with some literature review and justification of why you are working on this project (importance of the project). Carefully explain the procedure of the experiments and technical details of how the assay is carried out in the section of materials and methods. After presenting the results and discuss the meaning of the results, explain briefly what could be done next or what could have been done better to obtain better results.
- 3. Explain the limitations of the present study. At the end, a conclusion has to be made in the discussion part to end the report.
- Usually, 3-5 figures and tables should be enough for such a short report of around 25-30 pages with word count < 5,000. Students may consider follow the journal format of Biochemical and Biophysical Research Communications.

Note: In the case that face-to-face meetings are deemed not feasible by the university, all meetings and assessments will be conducted online. Students should follow the course announcements on the Course Blackboard as well as university announcements.

GRADE DESCRIPTORS

dard of SCI
magantation
presentation
ndard to SCI
and weak in
ith enough
al analysis
out failed to
s or citations
weak in data
rpretation at
•
mited data
rch failed
ous data to
a in the

RECOMMENDED READING

Web resources

These websites provide how to write a good scientific report:

https://www.sheffield.ac.uk/polopoly_fs/1.96443!/file/report-writing-06-07.pdf

<u>Scientific Writing Made Easy: A Step-by-Step Guide to Undergraduate Writing in the Biological</u> <u>Sciences</u>

11 steps to structuring a science paper editor will take seriously

ENQUIRY

Prof. CHAN Ting Fung (course coordinator); Tel: 3943-6876; Email: <u>tf.chan@cuhk.edu.hk</u>; Office address: Room 177, Science Centre, CUHK

Recommended Report Format for BCH2070 Research Internship

Word limit: 5,000 (including figures, tables, references, etc; however, for microarray, proteomic data, or programming data, you may put them in appendixes at end of the report or links to cloud storage). Please set margin in "moderate" and submit report in pdf file with a signed VeriGuide certificate.

BCH2070 Research Internship Report (Total word count: XXXX)

TITLE: Expression, purification, and biological activities of recombinant goldfish somatolactin α **STUDENT:** Chan Tun Nah, Fish (student id: 08765433)

SUPERVISOR: Prof. Dan Ryan

ABSTRACT:

Background: Somatolactin (SL) is a novel pituitary hormone found in fish.....

Methods: complementary DNA (cDNA) encoding for goldfish (gf) SL α was obtained by using polymerase chain reaction.....

Results: After purification of the recombinant gfSL using His-tag column chromatography,..... Conclusion: The purified recombinant gfSL was successfully; avoid excessive figures/data in writing the abstract.

KEYWORDS: cDNA cloning, pituitary gland, receptor binding assay (do not repeat words used in title)

ABBREVIATIONS: AMP, ampicillin, etc.

INTRODUCTION

BACKGROUND: Somatolactin (SL) was first found in flounder by cDNAcloning.......... (Ono et al., 1991). However, you may use numbering system to edit your citations made, consult with your supervisor which system you use.

A review on this research topic.

Objective(s) of this study: The objective of this study is to compare the biological activities of $gfSL \alpha$ expressed in

METHODS

Subjects/ Animals/ Bacterial strains

Chemicals (briefly include company names for kits and chemicals, no addresses needed)

cDNA cloning and nucleotide sequence determination

Purification of recombinant proteins

Receptor binding assay (do not forget to include relevant citations for the assays) **Statistical analyses**

RESULTS

Figure 1 shows the outline of the cloning strategy in this study.

Table 1 lists the primers used in the present study......

Figure 2 shows the elution profiles of

Table 2 is the summary of the yield of expressing

Remember to put figure title and legends at the bottom of the figure, and Table title with descriptions on top of the table.

DISCUSSION

We previously used similar technique to express......Compare results with results from your lab group and also published data with other research teams. Elaborate the novelty and significance of this work (what you have done differently from previous reports on similar study if any) Avoid repetitive statements made in the introduction and abstract..... may have a table to compare your results with others and suggest further study at the end. Explain the difficulties and limitations of this study and suggest ways to improve the study in the future. Please consider to make a graphical abstract to summaries what you have done in the last figure of the report.

Conclusion ... In conclusion, the recombinant gfSL α expressed in the bacterial system showed similar biological activity as compared with(be concise and precise).

Authors' contributions and declaration

Research idea is from Prof Thomas Chen, University of Connecticut, USA,..... All research materials were prepared by the report writer except the recombinant growth hormone used for comparison was a gift from Prof Chen

Acknowledgements This study was partly supported by Special thanks to Prof Chen for his gifts of the expression vector (pXYZ) and The author would like to thank the Chung Chi College Summer Research Funding. The sequences reported in this paper have been deposited in the GenBank database at NCBI and assigned the following accession numbers: A123456, nm987654......

REFERENCES

Amemiya, Y., Sogabe, Y., Nozaki, M., Takahashi, A., Kawauchi, H. (1999) Somatolactin in the white sturgeon and African lungfish and its evolutionary significance. Gen. Comp. Endocrinol. 114, 181-190.

Gao, S.Y., Li, E.M., Cui, L., Lu, X.F., Meng, L.Y., Yuan, H.M., Xie, J.J., Du, Z.P., Pang, J.X., Xu, L.Y. (2009) Sp1 and AP-1 regulate expression of the human geneVIL2 in esophageal carcinoma cells. J. Biol. Chem. [Epub ahead of print: www.....Doi.....

Alternatively, you may use numbering method as being used in BBRC.....

Be consistent when writing your citations or references throughout your report.

The Chinese University of Hong KongSchool of Life SciencesBiochemistry ProgrammeBCHE2070Research InternshipAssessment form

Student Name:

Student id:

Title:

	Comments		Mark
I. Significance and		A: 25 24	
methodology of the		A-: 23 22 21 20	
research (Review of		B: 19 18 17 16	
background of the		C: 15 14 13 12 11	
research, and			
descriptions of materials and			
materials and methods used)		F: 5 4 3 2 1	
methous used)			
II. Accuracy and		A: 25 24	
Quality of results		A-: 23 22 21 20	
obtained and discussion of the		B: 19 18 17 16	
results obtained		C: 15 14 13 12 11	
		D: 10 9 8 7 6	
		F: 5 4 3 2 1	
III. Clarity and lucidity		A: 25 24	
of presentation (overall		A-: 23 22 21 20	
flow and elaboration of the research		B: 19 18 17 16	
performed)		C: 15 14 13 12 11	
		D: 10 9 8 7 6	
		F: 5 4 3 2 1	
IV. Adequacy of		A: 25 24	
literature review,		A-: 23 22 21 20	
references and citations (figures must not be cut and paste from website and have to be originals).		B: 19 18 17 16	
		C: 15 14 13 12 11	
		D: 10 9 8 7 6	
		F: 5 4 3 2 1	

General Remarks and Comments:

Marker: <u>Prof.</u> Signature:

Date:

Please enter the marks to the box at the end of the row. The approximate grades corresponding to the marks are given as references. You can make any comments as you wish. **Please provide justifications for marks above 24 or below 11**.

BCHE3030 METHODS IN BIOCHEMISTRY 2018-19 2nd term

Description

This course aims at introducing quantitative analyses of biochemical reactions and subcellular components to students. Methods for purification and studies on biomolecules will be introduced. Techniques including fluorescence spectrophotometry and microscopy, X-ray crystallography, centrifugation, chromatography and electrophoresis will be covered.

Content/Fundamental Concepts

Fluorescence Technology: This block is intended to introduce to students an in-depth knowledge of the principles of fluorescence and its applications for biochemistry and cell biology research. Topics include principles of fluorescence, design and application of fluorescence probes, fluorescence measurements, special techniques and recent advances in fluorescence technology.

X-ray Crystallography: This session will introduce the basic principles of protein crystallization. Different crystallization methods and optimization strategies will be discussed. The use of X-ray diffraction to determine the three-dimensional structure of proteins will be introduced.

Centrifugation: This session will introduce the basic theory of centrifugation and the mathematical expression of sedimentation rate. We will also discuss the different types of centrifuge and rotor commonly used in biochemical studies. The principles of differential centrifugation and density gradient centrifugation, and their applications will be covered.

Chromatography: This session will introduce the basic principles of chromatography, a partition process in which molecules distribute between two different phases. The various chromatographic techniques particularly useful in protein purification, including ion-exchange chromatography, gel filtration and affinity chromatography, will be discussed.

Electrophoresis: In this block of lectures, particular emphasis will be given to the electrophoretic methods used in studying proteins, namely SDS-polyacrylamide gel electrophoresis and isoelectric focusing. The use of electrophoresis in the study of nucleic acids will be discussed. In addition, the applications of the instrumental technique capillary electrophoresis will also be covered.

Learning Outcome

After completing the course, students should be able to understand both the basic principles and the practical aspects of different methods in biochemical analyses, including fluorescence techniques, X-ray crystallography, centrifugation, chromatography and electrophoresis. The knowledge gained will be useful in their final year experimental research project.

Assessment Scheme

Class Test (I)	30%	Fluorescence technology
Class Test (II)	30%	X-ray crystallography
Class Test (III)	40%	Centrifugation, chromatography and electrophoresis

Grade Descriptors for BCHE3030

Grade	Overall Course
А	Outstanding performance on all learning outcomes
A-	Generally outstanding performance on the majority of learning outcomes
В	High performance on some learning outcomes
С	Satisfactory performance on the majority of learning outcomes
D	Barely satisfactory performance on a number of learning outcomes
F	Unsatisfactory performance on the majority of learning outcomes

Learning Resources

Reference:

Principles and Techniques of Biochemistry and Molecular Biology 7th edition, 2010 Edited by Keith Wilson and John Walker, Cambridge University Press (QP 519.7 P75)

Wilson and Walker's Principles and Techniques of Biochemistry and Molecular Biology 8th edition, 2018 Edited by Andreas Hofmann and Samuel Clokie, Cambridge University Press.

Other reading materials (including reference books, journals articles and web sites) will be given by individual teachers.

Course Schedule

Т 3-4	10:30 am – 12:15 pm	MMW LT2
H 4	11:30 am – 12:15 pm	MMW LT2

Week no.	Date	Hour	Торіс	
1	8 Jan (Tue)	2	Introduction to Fluorescence	S K Kong
	10 Jan (Thu)	1	Design and Application of Fluorescent Probes	S K Kong
2	15 Jan (Tue)	2	Fura-2, a Good Example for Fluorescent Probe Design	S K Kong
	17 Jan (Thu)	1	Fluorescence Measurement I: Fluorescence Fluorometer, Epi-Fluorescence Microscope & Confocal Microscopy	S K Kong
3	22 Jan (Tue)	2	Fluorescence Measurement II: Flow Cytometry, Real-time PCR Machine	S K Kong
	24 Jan (Thu)	1	Special Techniques and Recent Advances in Fluorescence Technology I: Fluorescence Resonance Energy Transfer	S K Kong
4	29 Jan (Tue)	2	Special Techniques and Recent Advances in Fluorescence Technology II: Green Fluorescence Protein & its Application	S K Kong
	31 Jan (Thu)	1	Introduction to Protein X-ray Crystallography	Shannon Au

5	5 Feb (Tue)		HOLIDAY: LUNAR NEW YEAR	
	7 Feb (Thu)		HOLIDAY: LUNAR NEW YEAR	
6	12 Feb (Tue)	2	Crystallization Methods and Optimization	Shannon Au
	14 Feb (Thu)	1	CLASS TEST (I)	SK Kong
7	19 Feb (Tue)	2	Basic Concepts in X-ray Diffraction (I)	Shannon Au
	21 Feb (Thu)	1	Basic Concepts in X-ray Diffraction (II)	Shannon Au
8	26 Feb (Tue)	2	Structure Determination, Model Building and Refinement	Shannon Au
	28 Feb (Thu)	1	Recent Advances in Protein Crystallography (I)	Shannon Au
9	5 Mar (Tue)	1	Recent Advances in Protein Crystallography (II)	Shannon Au
		1	General Techniques in Protein Purification	W P Fong
	7 Mar (Thu)	1	Basic Principles in Centrifugation	W P Fong
10	12 Mar (Tue)	2	Different Centrifugation Techniques, Basic Principles in Chromatography	W P Fong
	14 Mar (Thu)	1	CLASS TEST (II)	Shannon Au
11	19 Mar (Tue)	2	Resolution in Chromatographic Separation, Different Types of Chromatography	W P Fong
	21 Mar (Thu)	1	Chromatography for Protein Purification	W P Fong
12	26 Mar (Tue)	2	Steps in Protein Purification	W P Fong
	28 Mar (Thu)	1	Analysis of Protein Purity by SDS-PAGE	W P Fong
13	2 Apr (Tue)		READING WEEK	
	4 Apr (Thu)		READING WEEK	
14	9 Apr (Tue)	2	Basic Principles in Electrophoresis	W P Fong
	11 Apr (Thu)	1	Isoelectric Focusing and 2-D Electrophoresis	W P Fong
15	16 Apr (Tue)	2	Detection after Electrophoresis, Electrophoresis of Nucleic Acids	W P Fong
	18 Apr (Thu)	1	Capillary Electrophoresis	W P Fong

Teacher's Contact Details

Professor FONG, Wing Ping (coordinator)	MMW 608	39436868 wpfong@cuhk.edu.hk
Professor KONG, Siu Kai	MMW 609	39436799 skkong@cuhk.edu.hk
Professor AU, Shannon W.N.	SC 178	39434170 shannon-au@cuhk.edu.hk

A Facility for Posting Course Announcements

Course announcements and materials will be posted on the Blackboard website at the CU E-Learning system. The powerpoint slides used will be posted on the website before the lecture. No hard copies will be distributed in the class.

Academic Honesty and Plagiarism:

According to University regulations, students must submit an electronic version of their assignment to VeriGuide system for the purpose of checking for possible plagiarism. Read the University's policies on plagiarism carefully and do not plagiarise! CUHK has adopted a policy of zero tolerance for plagiarism. Instructors will send all suspected cases of plagiarism directly to the disciplinary committee for investigation. In the case of group report, plagiarism will affect all partners! Students submitting assignment done by third party is also a serious misconduct and regarded as fraud or academic dishonesty. The updated Procedures are available at the University's website "Honesty in Academic Work: A Guide for Students and Teachers" (http://www.cuhk.edu.hk/policy/academichonesty/). Students please note the aforementioned marking scheme, grade descriptors, academic honesty principle and the university penalty guideline are all applicable to this course. General university regulations are available on line: http://www.res.cuhk.edu.hk/en-gb/general-information/university-regulations.

BCHE3040 PROTEINS AND ENZYMES

2018/2019, 1st Term

Description:

Three-dimensional conformations of proteins and protein folding will be discussed with emphasis on structure-function relationships. Enzyme catalysis will be introduced with respect to coenzyme requirements, kinetics, catalytic mechanism and regulation of enzymatic activities.

Contents/Fundamental Concepts:

Protein Structure and Folding: This session will discuss the basic principles governing the structure of protein. As protein molecules are organized in a structural hierarchy, topology diagrams will be used to illustrate the motifs of protein structure. In particular, the alpha-domain structures, beta structures and the alpha/beta structures will be discussed. The key concepts of thermodynamics and kinetics in the process of protein folding and the stabilization of protein structure will be illustrated.

Structure-Function Relationship in Selected Proteins: Chaperone is protein that helps correct protein folding while ubiquitin, together with the proteasome system, is responsible for protein degradation. They will be discussed with respect to their structure-function relationship. Specific examples will be used to illustrate the general structure of membrane proteins. DNA-binding proteins can regulate gene activity. Different DNA binding motifs will be introduced. To improve the properties, protein can be engineered. Methods like DNA shuffling will be discussed.

Protein-Protein Interaction: The different methods for studying protein-protein interaction will be introduced. Among them are qualitative ones like chemical cross linking, co-immunoprecipitation, yeast two hybrid system, fluorescent resonance energy transfer, and also quantitative ones like surface plasmon resonance and isothermal titration calorimetry. The use of mass spectrometry in the identification of protein will also be discussed.

Introduction to Enzymes: The basic characteristics of enzymes as biocatalysts, for example the specificity, ability to be regulated and the catalytic power will be introduced. Ribonucleic acids having catalytic activities will be mentioned. The enzyme nomenclature system and the requirement of coenzymes and metals ions for various enzymatic reactions will also be discussed.

Kinetics, Regulation and Mechanism: Different methods for measuring enzyme activities and the precautions needed when performing enzyme assays will be discussed. Michaelis-Menten enzyme steady state kinetics will be covered, with particular emphasis on the significance of the Km and kcat values. Different types of enzyme inhibitors, including allosteric ones, will be introduced. The various means by which enzyme activities can be regulated will be mentioned. Examples will be given to illustrate how the different amino acid residues in the active site of the enzyme contribute to the activity of the enzyme.

Clinical and Industrial Enzymology: This session will introduce the use of enzymes in different clinical applications, for example, the serum enzyme activity assay as a diagnostic tool, the use of enzyme as a reagent to measure the concentration of metabolites, the use of enzyme inhibitor as drug and the use of enzyme itself as therapeutic agent. Examples will also be given to illustrate the application of enzymes in different industries, particularly, in pharmaceutical and food industries.

Learning Outcomes:

After completing the course, students should be able to:

- (1) explain the protein structure and the folding process;
- (2) learn the structure and function of some selected proteins, for example, membrane proteins;
- (3) describe the different methods for studying protein-protein interactions;
- (4) know the basic principles in enzymology;
- (5) understand the kinetics, mechanism and regulation of enzyme activity; and
- (6) realize the clinical and industrial applications of enzymes.

Assessment Scheme:

Assignments:	20%	
Mid-term Examination:	40%	(Proteins)
Final Examination:	40%	(Enzymes
		ר ר

Grade Descriptors

Grade	Overall Course
А	Outstanding performance on all learning outcomes
A-	Generally outstanding performance on the majority of learning outcomes
В	High performance on some learning outcomes
С	Satisfactory performance on the majority of learning outcomes
D	Barely satisfactory performance on a number of learning outcomes
F	Unsatisfactory performance on the majority of learning outcomes

Learning Resources:

References:

- (1) Proteins: Structure and Function.D. Whitford, John Wiley & Sons Ltd., 2005. (QU55 W535) online access
- (2) Introduction to Proteins: Structure, Function and Motion.A. Kessel and N. Ben-Tal, CRC Press, 2011. (QU55 K37) online access
- (3) How Proteins Work.M. Williamson, Garland Science 2012. (QD431 W536)
- (4) Lehninger Principles of Biochemistry.D.L. Nelson and M.M. Cox, W.H. Freeman, 2017. (QU4 N45)
- (5) Biochemistry. J.M. Berg, J.L. Tymoczko, G.J. Gatto and L. Stryer, W.H. Freeman, 2015. (QU4 S77)

Course Schedule:

M1	8:30 am - 9:15 am	MMWLT2
W1-2	8:30 am - 10:15 am	MMWLT2

a. Course Schedule

Week	Date	Hour(s)	Торіс
1	3 Sep (Mon)	0	Inauguration Ceremony for Undergraduates – NO CLASS
	5 Sep (Wed)	2	Introduction to Protein Structure
2	10 Sep (Mon)	1	From Motifs to Proteins
	12 Sep (Wed)	2	Protein Folding and Disease
3	17 Sep (Mon)	1	Proteins Associated with Folding and Degradation
	19 Sep (Wed)	2	Membrane Protein
4	24 Sep (Mon)	1	Examples: Bacteriorhodopsin, Potassium Channel and G-Protein
	26 Sep (Wed)	2	DNA-binding Protein
5	1 Oct (Mon)	0	PUBLIC HOLIDAY
	3 Oct (Wed)	2	Protein Engineering
6	8 Oct (Mon)	1	Protein-Protein Interaction
	10 Oct (Wed)	2	Protein Identification by Mass Spectrometry
7	15 Oct (Mon)	1	Introduction to Enzymes
	17 Oct (Wed)	0	PUBLIC HOLIDAY
8	22 Oct (Mon)	1	RNA as Biocatalyst
	24 Oct (Wed)	2	MID-TERM EXAMINATION
9	29 Oct (Mon)	1	Cofactor Requirement
	31 Oct (Wed)	2	Determination of Enzyme Activity
10	5 Nov (Mon)	1	Michaelis-Menten Kinetics
	7 Nov (Wed)	2	Inhibitors, Bi-substrate Reactions and Pre-steady State Kinetics
11	12 Nov (Mon)	1	Allosteric and Multimeric Enzyme
	14 Nov (Wed)	2	Regulation of Enzyme Activity
12	19 Nov (Mon)	1	Mechanism of Enzyme Catalysis
	21 Nov (Wed)	2	Examples of Enzyme Mechanism
13	26 Nov (Mon)	1	Clinical Enzymology
	28 Nov (Wed)	2	Industrial Enzymology
	Total:	35	

b. Tutorial Schedule

Question and Answer Session (s) will be arranged before the examinations.

Teacher's Contact Details:

Professor FONG WING-PING MMW 608 39436868 wpfong@cuhk.edu.hk

A Facility for Posting Course Announcements:

Course announcements and materials will be posted on the Blackboard course website. The powerpoint slides used will be posted on the Blackboard course website before the lecture.

Academic Honesty and Plagiarism:

According to University regulations, students must submit an electronic version of their assignment to VeriGuide system for the purpose of checking for possible plagiarism. Read the University's policies on plagiarism carefully and do not plagiarise! CUHK has adopted a policy of zero tolerance for plagiarism. Instructors will send all suspected cases of plagiarism directly to the disciplinary committee for investigation. In the case of group report, plagiarism will affect all partners! Students submitting assignment done by third party is also a serious misconduct and regarded as fraud or academic dishonesty. The updated Procedures are available at the University's website "Honesty in Academic Work: A Guide for Students and Teachers" (http://www.cuhk.edu.hk/policy/academichonesty/). Students please note the aforementioned marking scheme, grade descriptors, academic honesty principle and the university penalty guideline are all applicable to this course. General university regulations are available on line: http://www.res.cuhk.edu.hk/en-gb/general-information/university-regulations.

BCHE3050 Molecular Biology
Schedule and Assessment Scheme 2018-19 Term 2

Week	Date	Торіс	Teacher
1	7 Jan	DNA, genome and elements	PCS
2	14 Jan	Organization and packaging of genome, DNA	PCS
		replication	
3	21 Jan	DNA replication	PCS
4	28 Jan	Transcription	PCS
5	4 Feb	Lunar New Year Holiday	PCS
6	11 Feb	RNA processing and transcriptional regulation,	PCS
		tutorial	
7	18 Feb	Transcriptional regulation	-
8	25 Feb	50 min. test, DNA mutation and recombination	PCS
9	4 Mar	DNA repair	PCS
10	11 Mar	Translation	PCS
11	18 Mar	Translation	PCS
12	25 Mar	Translational control	PCS
13	1 Apr	Reading week, no class	-
14	8 Apr	Proteins after translation	PCS
15	15 Apr	50 min. test	PCS

School Term: 7 Jan – 18 Apr 2010 Class Period: 9:30AM - 11:15AM (Monday) Venue: LT6 Lady Shaw Building (LSB LT6)

Course description:

This course discusses basic areas of molecular biology. Topics include: DNA and genome, DNA replication, transcription, translation, gene regulation, DNA mutation, recombination and repair.

References:

J.M. Berg, J.L. Tymoczko, L. Stryer (2011) Biochemistry. 7th Edition, or 2015 8th Edition.D.L. Nelson, M.M. Cox (2012) Lehninger Principles of Biochemistry 6th Edition, or 2017 7th Edition.T.M. Devlin ed. (2011) Textbook of biochemistry: with clinical correlations, 7th Edition.

One online exercise – 10% (one week for each student to participate, 1 mark will be deducted every day for delay in returning the 3D viewer, please find Ms. Cindy Tam at Rm185, Science Centre South Block for the 3D viewer) Deadline: 23:59, 11 February 2019 Two tests (each 45%) – MC, T/F, short questions

Grade Descriptors for BCHE3050 Molecular Biology

Grade	Overall course	
A	 Demonstrates the ability to synthesize and apply the principles of various topics in molecular biology learnt in the course, to novel situations and/or in novel ways, in a manner that would surpass the normal expectation at this level, and typical of standards that may be common at higher levels of study or research. Has the ability to express the synthesis of ideas or application in a clear and 	
A-	cogent manner.Demonstrates the ability to state and apply the principles of various topics in molecular biology learnt in the course to familiar and standard situations in a manner that is logical and comprehensive. Has the ability to express the knowledge or application with clarity.	
В	Demonstrates the ability to state and partially apply the principles of various topics in molecular biology learnt in the course to most (but not all) familiar and standard situations in a manner that is usually logically persuasive. Has the ability to express the knowledge or application in a satisfactory and unambiguous way.	
С	Demonstrates the ability to state and apply the principles of various topics in molecular biology learnt in the course to most (but not all) familiar and standard situations in a manner that is mostly correct and somewhat fragmented. Has the ability to express the separate pieces of knowledge satisfactory.	
D	Demonstrates the ability to state and sometimes apply the principles of various topics in molecular biology learnt in the course to some simple and familiar situations in a manner that is broadly correct in its essentials Has the ability to state the knowledge or application in simple terms.	
F	Unsatisfactory performance on a number of learning outcomes, OR failure to meet specified assessment requirements.	
BCHE3070 Recombinant DNA Techniques Schedule and Assessment Scheme 2018-19 Term 2

Week	Date	Торіс	Teacher
1	10 Jan	Restriction and modification enzymes	PCS
2	17 Jan	Restriction and modification enzymes	PCS
3	24 Jan	Separation and joining of DNA, purification of DNA, short	PCS
		exercise 1	
4	31 Jan	Prokaryotic vectors and their introduction to cells	PCS
5	7 Feb	Holiday- Chinese New Year Vacation	PCS
6	14 Feb	Submit exercise, Prokaryotic vectors and their introduction to	-
		cells	
7	21 Feb	Discussion on exercise	PCS
8	28 Feb	Polymerase chain reaction, DNA sequencing and applications	PCS
9	7 Mar	Polymerase chain reaction, DNA sequencing and applications,	PCS
		short exercise 2	
10	14 Mar	Eukaryotic vectors and their introduction to cells	PCS
11	21 Mar	To obtain clones of a specific gene, Production of protein from	PCS
		cloned gene	
12	28 Mar	Production of protein from cloned gene; submit exercise	PCS
13	4 Apr	Reading week – no class	-
14	11 Apr	Discussion on exercise	Helper
15	18 Apr	Rounding up	PCS

Class Period: 10:30AM - 11:15AM (Thursday), LT1 Mong Man Wai Building (MMW LT1)

Course description:

This course covers the basic concepts of common recombinant DNA techniques, including restriction and modification enzymes and their applications in recombinant DNA techniques, analyses of nucleic acids, insertion of DNA fragment into vectors and transformation of model organisms, expression of recombinant proteins, polymerase chain reaction, DNA and genome sequencing

Course objectives:

- (1) know the basic common techniques for DNA manipulation and analyses,
- (2) apply the knowledge acquired on given cases.

Reference:

Brown, T.A. (2010/2016) Gene cloning and DNA analysis. An introduction. 6th/7th Edition.

Exercise: 30%, 1 hour open book examination: 70% (Centralized Examination)

Grade	Overall course
A	Demonstrates the ability to synthesize and apply the principles and techniques in recombinant DNA learnt in the course, to novel situations and/or in novel ways, in a manner that would surpass the normal expectation at this level, and typical of standards that may be common at higher levels of study or research. Has the ability to express the synthesis of ideas or application in a clear and cogent manner.
A-	Demonstrates the ability to state and apply the principles and techniques in recombinant DNA learnt in the course to familiar and standard situations in a manner that is logical and comprehensive. Has the ability to express the knowledge or application with clarity.
В	Demonstrates the ability to state and partially apply the principles and techniques in recombinant DNA learnt in the course to most (but not all) familiar and standard situations in a manner that is usually logically persuasive. Has the ability to express the knowledge or application in a satisfactory and unambiguous way.
С	Demonstrates the ability to state and apply the principles and techniques in recombinant DNA learnt in the course to most (but not all) familiar and standard situations in a manner that is mostly correct and somewhat fragmented. Has the ability to express the separate pieces of knowledge satisfactory.
D	Demonstrates the ability to state and sometimes apply the principles and techniques in recombinant DNA learnt in thecourse to some simple and familiar situations in a manner that is broadly correct in its essentials Has the ability to state the knowledge or application in simple terms.
F	Unsatisfactory performance on a number of learning outcomes, OR failure to meet specified assessment requirements.

BCHE3080 Bioenergetics and Metabolism

Course Outline (2018-19, 1st term)

<u>Teacher</u>	Office	Tel.	E-mail
Dr. Ngai Hung-Kui, Patrick	MMW507B	3943 4359	hkngai@cuhk.edu.hk

Meeting Information

Tuesday2:30 - 5:15 PMBasic Medical Science Building G18

Course Description

This course covers basic concepts of how biological organisms obtain energy and perform metabolism to build different biomolecules. The following biochemical processes underlying energy transformation in living organisms will be discussed: photosynthesis, glycolysis, citric acid cycle, electron transport, oxidative phosphorylation, fatty acid oxidation. Biosynthesis of carbohydrates, lipids, nucleic acids, and proteins will be provided. The integration of metabolic pathways will also be discussed. Students are advised to take BCHE2030 before taking this course. (*Refer to Appendix I for the Grade Descriptors of this course*)

Assessment Scheme

Mid-Term Examination30%Final Examination60%Term Paper (~600 words)10%

Recommended Textbooks

- David L. Nelson, Michael M. Cox. (2017). Lehninger Principles of Biochemistry (7th ed.). New York: W.H. Freeman. [UL: QU4.N45 2017]
- Jeremy M. Berg, John L. Tymoczko, Gregory J. Gatto, Jr., Lubert Stryer. (2015). Biochemistry (8th ed.). New York: W.H. Freeman & Company, Macmillan Education Imprint.

[UL: QU4.S77 2015]

- 3. Thomas M. Devlin. (2011). **Textbook of biochemistry with clinical correlations** (7th ed.). Hoboken, NJ: John Wiley & Sons. *[UL: Oversize - QU4.T49 2010]*
- Donald Voet, Judith G. Voet. (2011). Biochemistry (4th ed.). Hoboken, NJ: John Wiley & Sons. [UL: Oversize - QP514.2.V64 2011]

Electronic Resources (E-Books)

- Ferrier, D., Lippincott Williams & Wilkins, & Wolters Kluwer Health. (2014). Biochemistry (6th ed., Lippincott's illustrated reviews). Philadelphia: Wolters Kluwer Health/Lippincott Williams & Wilkins. [Online Access: ISBN 9781451175622]
- Koolman, J., Röhm, K., & Wirth, J. (2013). Color Atlas of Biochemistry (3rd Ed.). Stuttgart:Thieme. [Online Access: ISBN 9783131696939]

- 3. Cammack, R. (2006). **Oxford dictionary of biochemistry and molecular biology** (Rev. ed.). Oxford; New York: Oxford University Press. *[Online Access: ISBN 0198529171]*
- 4. Panini, S. (2013). Medical Biochemistry: An Illustrated Review. New York: Thieme. [Online Access: ISBN 9781604063172]

Electronic Resources (E-Journals)

- 1. **Journal of Biological Chemistry** American Society for Biochemistry Molecular Biology [Online Access ISSN 1083-351X]
- 2. **Cell Metabolism** Cambridge, MA: Cell Press [Online Access: ISSN 1932-7420]
- 3. **Trends in Endocrinology and Metabolism** Amsterdam, the Netherlands: Elsevier Science Pub. Co. *[Online Access: ISSN 1879-3061]*
- Diabetes, Obesity & Metabolism
 England: John Wiley & Sons Ltd. [Online Access: ISSN 1463-1326]
- 5. Journal of inborn errors of metabolism and screening Thousand Oaks, CA : Sage Publications [Online Access: ISSN 2326-4594]

Immersive Learning Resources (Mobile Apps)

All mobile apps are developed by the Biochemistry Programme (CUHK) and can be freely downloaded in Play Store / Apple Store / Blackboard.

- 1. Virtual Reality 'VR Mitochon'
- 2. Augmented Reality 'ATP Synthase'

<u>CU eLearning System (Blackboard)</u>

Visit the website of the CU eLearning System (https://blackboard.cuhk.edu.hk/) and login using your Student-ID@link.cuhk.edu.hk and OnePass Password.

1. Course Website

2018R1-BCHE3080: Bioenergetics and Metabolism

2. Companion Website – Multimedia Learning Materials *CU-BCHE3080-EL: Bioenergetics and Metabolism (Extended Learning)*

<u>Honesty in Academic Work</u>

Every assignment handed in should be accompanied by a signed declaration. The form can be downloaded via the following website. Assignments without the properly signed declaration will not be graded. *(Refer to Appendix II for more information about Academic Honesty)*

http://www.cuhk.edu.hk/policy/academichonesty/Eng_htm_files_(2013-14)/p10.htm

BCHE3080 Bioenergetics and Metabolism Course Schedule (2018-19, 1st term)

Date	Modules
Sept. 4	Module 1 Overview of Bioenergetics and Metabolism
Sept. 11	Module 2 Glycolysis and the Catabolism of Hexoses
	Glycolysis: a central pathway of glucose metabolism
	Utilization of other sugars as metabolic fuels
	Pentose phosphate pathway
Sept. 18	Module 3 Citric Acid Cycle
	Common pathway for oxidation of acetyl group
	Regulation and amphibolic nature of TCA cycle
	Module 4 Oxidative Phosphorylation
	Structure and function of electron transport chain
Sept. 25	Public Holiday – The Day Following The Chinese Mid-Autumn Festival
Oct. 2	Mechanism of ATP synthesis
	Module 5 Photophosphorylation
	Structure of photosynthesis apparatus
	The generation of ATP and the Calvin cycle
0ct. 9	Mid-term Examination (Modules 1- 4)
	Module 6 Oxidation of Fatty Acids
0ct. 16	Utilization of fatty acids as metabolic fuels
	Formation and utilization of ketone bodies
Oct. 23	Module 7 Oxidation of Amino Acids
	Amino acid degradation & metabolic fates of amino groups
	Nitrogen excretion and the urea cycle
Oct. 30	Module 8 Biosynthesis of Carbohydrates
	• Gluconeogenesis
	Biosynthesis of glycogen and other carbohydrates
Nov. 6	Module 9 Biosynthesis of Lipids
	Biosynthesis of fatty acids and triacylglycerol
	Biosynthesis of phospholipids, cholesterol, steroids and isoprenoids
Nov. 13	Module 10 Biosynthesis of Amino Acids
	Biosynthesis of amino acids
	Molecules derived from amino acids
Nov. 20	Module 11 Integration of Fuel Metabolism
Nov. 27	Module 12 Nucleotide Metabolism
	Biosynthesis and degradation of nucleotides
	Sept. 11 Sept. 18 Sept. 25 Oct. 2 Oct. 2 Oct. 16 Oct. 23 Oct. 30 Nov. 6 Nov. 13

Free academic consultation sessions will be arranged. Details of the arrangement will be announced in Blackboard.

Appendix I Grade Descriptors for BCHE3080

Grade	Descriptors of overall course
A/A-	Demonstrates the ability to apply the learned principles of bioenergetics and
	metabolism to novel situations and/or in novel ways. Shows the ability to design
	scientific methods to investigate a biochemical problem in a creative manner that
	would substantially surpass the normal expectation at this level and typical of
	standards that may be common at higher levels of study or research. Shows
	evidence of critical evaluation of different approaches to solving a problem.
	Demonstrates the ability to articulate the synthesis of new ideas or applications in a
	clear and cogent manner.
В	Demonstrates the ability to apply some learned principles of bioenergetics and
	metabolism to familiar and standard situations in a manner that is usually logically
	persuasive. Shows the ability to explain some biochemical phenomena in a manner
	that would meet the normal expectation at this level. Shows evidence of logical
	analysis of simple biochemical problems. Demonstrate the ability to articulate
	scientific concepts or applications in a logical and coherent way.
C	Demonstrates the ability to apply certain learned principles of bioenergetics and
	metabolism to familiar and standard situations in a manner that is partially correct
	or is somewhat fragmented. Shows the ability to articulate scientific concepts in a
	concise way.
D	Demonstrates the ability to apply certain learned principles of bioenergetics and
	metabolism to simple situations in a manner that is broadly correct in its essentials
	or is somewhat ambiguous. Shows the ability to explain certain scientific concepts or
	applications in simple terms. Demonstrate the ability to recall biochemical equations
	or definitions.
F	Unsatisfactory performance on a number of learning outcomes, OR failure to meet
	specified assessment requirements.

Appendix II Academic Honesty

Attention is drawn to University policy and regulations on honesty in academic work, and to the disciplinary guidelines and procedures applicable to breaches of such policy and regulations. Details may be found at http://www.cuhk.edu.hk/policy/academichonesty/.

With each assignment, students will be required to submit a signed declaration that they are aware of these policies, regulations, guidelines and procedures.

- In the case of group projects, all members of the group should be asked to sign the declaration, each of whom is responsible and liable to disciplinary actions, irrespective of whether he/she has signed the declaration and whether he/she has contributed, directly or indirectly, to the problematic contents.
- For assignments in the form of a computer-generated document that is principally text-based and submitted via VeriGuide, the statement, in the form of a receipt, will be issued by the system upon students' uploading of the soft copy of the assignment.

Assignments without the properly signed <u>declaration</u> will not be graded by teachers.

Only the final version of the assignment should be submitted via VeriGuide.

The submission of a piece of work, or a part of a piece of work, for more than one purpose (e.g. to satisfy the requirements in two different courses) without declaration to this effect shall be regarded as having committed undeclared multiple submissions. It is common and acceptable to reuse a turn of phrase or a sentence or two from one's own work; but wholesale reuse is problematic. In any case, agreement from the course teacher(s) concerned should be obtained prior to the submission of the piece of work.

THE CHINESE UNIVERSITY OF HONG KONG School of Life Sciences Biochemistry Programme

BCHE3092 Self-Study Modules in Biochemistry and Professional Development (2018-19 / 1st Term)

Teachers	Office	Tel.	E-mail
Prof. Shannon W.N. Au (Coordinator)	SC 178	3943 4170	shannon-au@cuhk.edu.hk
Prof. T.F. Chan	SC 177	3943 6876	tf.chan@cuhk.edu.hk
Prof. K.M. Chan	SC 184	3943 4420	kingchan@cuhk.edu.hk
Dr. F.H. Lo	MMW 507B	3943 4359	lofaihang@cuhk.edu.hk
Dr. Patrick H.K. Ngai	MMW 507B	3943 4359	hkngai@cuhk.edu.hk
Prof. Jacky C.K. Ngo	SC E403	3943 6346	jackyngo@cuhk.edu.hk
Prof. P.C. Shaw	SC 180	3943 1363	pcshaw@cuhk.edu.hk

COURSE OBJECTIVES

This course aims to enhance students' abilities and competence in information search, critical reading and analysis, and communication in biochemistry. In addition, transferable skills and strategies for professional development necessary for career entry and for a sustainable satisfying career are also our emphases. Through different course activities, students should also be able to develop their generic skills in collaborative teamwork, problem solving, and peer-assessment.

COURSE OPERATION

This course includes lectures on scientific paper reading and writing. Oral presentations and discussion will be arranged in small groups. A set of scientific papers on various biochemistry topics will be assigned to students to obtain wide scope of biochemistry knowledge. Students are requested to give two oral presentations, one on the assigned paper and another one on a selected research article. In the term end, a written report should be submitted in term end. In addition, this course will include a workshop series on career entry and trajectory development. Case studies and examples on combining developing transferable skills in global commercialization and career development will be discussed.

AS 1.	SESSMENT SCHEME On-line quizzes on Module 6	10%
2.	<u>Group presentation I</u> Powerpoint draft Presentation	5% 15% (10% Teacher assessment, 2.5% Peer assessment, 2.5% Q&A)
3.	Workshops	20%
4.	<u>Group presentation II</u> Difficulty of selected paper Presentation	5% 20% (15% Teacher assessment, 2.5% peer assessment, 2.5% Q&A)
5.	Individual written report	25%

Week	Date	Торіс	Teacher/Venue	Remarks
1	4 Sep	Introduction / How to read a scientific paper	WNA / YIA LT1	Review Module 6 (M6)
2	11 Sep	How to present a scientific paper	WNA / UCA_104	Review Module 6
3	18 Sep	Self-study	-	 Complete <i>Quiz M6a</i> by 18 Sep Submit the draft Powerpoint file by 24 Sep Arrange a time to meet the teacher in the week of 24 Sep
4	25 Sep	Public holiday (Day afte	r Mid-Autumn Festival)	
5	2 Oct	Group presentation I - Assigned Papers	PCS (Group A) / LSK_203 KMC (Group B) / ERB_406 TFC (Group C) / MMW_706 FHL (Group D) / MMW_715 CKN (Group E) / MMW_704 HKN (Group F) / LHC_G01 WNA (Group G) / SC_297	Submit the presentation file 24-hr before the assigned date of presentation
6	9 Oct	Group presentation I – Assigned Papers	PCS (Group A) / LSK_203 KMC (Group B) / ERB_406 TFC (Group C) / MMW_706 FHL (Group D) / MMW_715 CKN (Group E) / MMW_704 HKN (Group F) / LHC_G01 WNA (Group G) / SC_297	
7	16 Oct	Workshop 1	Dr. Erik Wong / UCC_C5	
7	20 Oct (Sat)	Workshop 2 & 3	Dr. Erik Wong / YIA_201	 Workshop from 10.30 to 2.15pm (Lunch will be provided) Complete <i>Exercise-W1</i> by 21 Oct
8	23 Oct	Workshop 4	Dr. Erik Wong /UCC_C5	Complete <i>Exercise-W2 & W3</i> by 25 Oct
9	30 Oct	Self-study	-	 Complete Exercise -W4 by 28 Oct Submit the selected article for presentation II by 6 Nov Review Module 6
10	6 Nov	Writing a scientific paper	CKN /UCA_104	Complete Quiz-M6b by 12 Nov
11	13 Nov	Group presentation II – Selected papers	PCS (Group B) / ERB_406 KMC (Group C) /MMW_706 TFC (Group D) / MMW_715 FHL (Group E / MMW_704 CKN (Group F) / LHC_G01 HKN (Group G) / SC_297 WNA (Group A) / LSK_203	Submit the presentation file 24-hr before the assigned date of presentation
12	20 Nov	Group presentation II – Selected papers	PCS (Group B) / ERB_406 KMC (Group C) /MMW_706 TFC (Group D) / MMW_715 FHL (Group E / MMW_704 CKN (Group F) / LHC_G01 HKN (Group G) / SC_297 WNA (Group A) / LSK_203	
13	27 Nov	Self-study		Submit your individual written report by 4 Dec.

Grade Descriptors for BCHE3092

Grade	Marks [#]	Oral Presentations & Workshops	Term Paper Writing
A	>85	Able to address and discuss the selected topics in	Able to write critically on selected
	- 00	biochemistry up to a very high standard with a	topics up to a publication standard
		potential to do biochemistry research. Able to make	with quality data presentation and
		a professional presentation with clarity and provide	discussion.
		enough references to support the arguments	uiscussion.
		proposed.	
		Active participation in workshops and class	
		projects.	
A-	80-85	Able to address the selected paper in biochemistry	Able to write a nice paper review
A-	00-05	research up to a high standard, and elaborate the	critically on selected papers in a good
		papers with in depth analysis of the research	standard with clarity and enough
		rationale involved. Procedures explained well, with	citations of recent papers.
		results and discussion elegantly illustrated.	citations of recent papers.
		Active participation in workshops and class	
B+	75-79	projects. Able to address the selected papers in biochemistry	Able to unite a pice paper review
D+	13-19	up to a good standard with all terms and their	Able to write a nice paper review critically on selected papers in a good
		relationships clearly identified; and manage to	standard with clarity and enough
		answer explain the papers to peer students'	citations of recent papers.
		satisfaction.	citations of recent papers.
		Active participation in workshops and class	
		projects.	
В	70-75	Able to address the selected papers in biochemistry	Able to write a nice paper review
D	70-75	up to a good standard with all terms and their	critically on selected papers in a good
		relationships clearly identified; and manage to	standard with clarity and enough
		answer explain the papers to peer students'	citations of recent papers.
		satisfaction.	citations of recent papers.
		Moderate participation in workshops and class	
		projects.	
B-	65-69	Able to address the selected papers in biochemistry	Able to write a nice paper review on
D	00 07	up to a good standard with all terms and their	selected papers in a good standard
		relationships clearly identified; and manage to	with clarity and enough citations of
		answer explain the papers to peer students'	recent papers.
		satisfaction.	
		Moderate participation in workshops and class	
		projects.	
C+	60-64	Fair ability to address the topic or paper selected in	Invalid or limited data presented in the
-		biochemistry research; manage to make a decent	required writing on paper review.
		presentation in the class.	1
		Fair participation in workshops and class projects.	
С	55-59	Fair ability to address the topic or paper selected in	Invalid and very limited data
_		biochemistry research; manage to make a decent	presented in poster and term assays.
		presentation in the class.	
		Fair participation in workshops and class projects.	
C-/D	50-54	Fair ability to address the topic or paper selected in	Invalid and very limited data
,		biochemistry research; manage to make a decent	presented in poster and term assays.
		presentation in the class.	1 F F F F F F F F F F F F F F F F F F F
		Fair participation in workshops and class projects.	
F	< 50	Unable to discuss the selected papers in	Failed to submit any written report
		biochemistry; unable to make any presentations in	required. Assignments found with
		the class.	plagiarized materials.
		No participation in workshops and class projects.	
	1		1

[#] The range of marks is an approximation suggested for reference only. The actual grade shall reflect the overall performance in the course, which comprises the descriptors for both the oral presentation and workshops and written paper.

Detailed Course Information

Units: 3	ndergraduate raded ecture	Chinese Title: 化學生物學
Programme Type: Major $$ Course Type: Required Term(s) of Offering: Term Course to be offered in 2020	2	Others Υ STOT Υ
Final Exam: Yes Centralised Exam Venue Ne	eeded: Yes	
For students admitted in 201	5/16 and thereafter.	
BCHE203 CHEM10 CHEM10	30 and one of the following three 30 Fundamentals of Biochemistry 70 Principles of Modern Chemis 72 General Chemistry 80 Introduction to Organic Chem	try
Co-requisite(s): none Course exclusions(s): none Other requirements(s): nor		

Course Description (English version)

The discipline of chemical biology is focused on the application of chemical principles, particularly organic chemistry, to the study and manipulation of biological systems. Two major focus areas include the development of chemical tools to proteins and cells, and in the identification and creation of novel compounds as therapeutics for the treatment of human disease. The course will begin with a brief review of organic chemistry fundamentals and bio-orthogonal ligand reactions. It will then cover case studies to illustrate the power of chemical biology to solve important problems at the chemistry-biology interface.

Course Description (Chinese version)

化學生物學著重化學原理的應用,特別是有機化學在生物系統中的研究和操縱。其中兩個主要 領域包括蛋白質和細胞化學工具的開發,及新型化合物的鑑定和創造以作為治療人類疾病之 用。本課程首先回顧有機化學和生物正交配體反應的基礎知識,再通過案例研究以瞭解化學生 物學的應用。這些案例反映出化學生物學在跨學科領域上解決重要問題的能力。

Learning Outcome

Knowledge

- Recall the fundamental aspects of chirality and basic reaction mechanisms in organic chemistry.
- Know the core bio-orthogonal reactions that can be used with biological systems.
- Be aware of the important biological and biomedical problems being tackled by scientists.
- Account for how chemical biology methods are used within biomedical research and pre-clinical drug discovery.

Skill

• Students will be able to assess, evaluate and choose appropriate chemical biology methods to use in their future research studies.

Value

• Chemical biology approaches have led to advances that have led to creation of multiple active biotech companies. The knowledge gained will equip them with the skills needed to pursue careers in disciplines at the chemistry and biology interface.

知識

- ·回顧有機化學中空間螺旋特性的基本知識和化學反應機理。
- •瞭解可應用於生物系統的核心生物正交反應。
- 關注科學家正在研究的重要生物學和生物醫學課題。
- 說明化學生物學方法如何可以應用在生物醫學的研究和臨床前藥物的新發現。

技能

•學生將能夠測試,評估和選擇適當的化學生物學方法以用於未來的研究。

價值

• 化學生物學的研究催生了多家活躍的生物科技公司的創建。學生獲得的相關知識將使他們 具備在化學和生物學跨學科領域工作所需的專業技能。

Course Syllabus (English version & Chinese version)

Schedule

Schedule	
Week	Торіс
週	主题
1	The properties of atoms and how they form bonds
	1. Periodic properties (atomic and ionic radii, electron affinity, ionization energy,
	electronegativity)
	2. Lewis theory, Atomic orbitals, hybrid orbitals and
	3. Molecular Geometry
1	原子性質及化學鍵生成
	1. 週期性(原子和離子半徑,電子親和力,電離能,負電性)
	2. 路易斯理論,原子軌道,混成軌道
	3. 分子幾何
2	Organic chemistry principles relevant to biological reactions I
	1. Stereochemistry
	2. Nucleophiles and electrophiles
	3. Nucleophilic substitution reactions (S_N1 and S_N2)
	4. Chemical synthesis based on nucleophilic substitution reactions
2	與生物反應相關的有機化學原理一
	1. 立體化學
	2. 親核試劑和 親電試劑
	3. 親核取代反應 (S _N 1 and S _N 2)
	4. 基於親核取代反應的化學合成
3	Organic chemistry principles relevant to biological reactions II
	1. Functional groups in proteins and nucleic acids
	2. Nucleophilic substitution reactions in biology
	3. Carboxylic acids and their derivatives
	4. Chemical reactions on carboxyl groups
3	與生物反應相關的有機化學原理二
	1. 蛋白質和核酸中的官能團

	2. 生物學中的親核取代反應
	3. 羧酸及其衍生物
	4. 羰基化學反應
4	Chemical synthesis of peptides
	1. Mechanism and thermodynamics of peptide bond formation
	2. Protecting groups
	3. Solid phase peptide synthesis
	4. Native chemical ligation and their derivatives
4	上一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一
	1. 肽鍵形成的機理和熱力學
	2. 保護基團
	3. 固相肽合成
	4. 本身已具有的官能團的化學連接及其衍生物
5	Natural and bioconjugate protein reactions
5	1. Bioorthogonal reactions for protein labeling and conjugation
	2. Expressed protein ligation
	 3. Isopeptide formation in biology: SpyTag/SpyCatcher reaction, ubiquitination, etc.
5	天然蛋白及生物接合蛋白的化學反應
5	1. 用於蛋白質標記和接合的生物正交反應
	2. 基因表達蛋白的連接反應
	3. 生物學中的異肽形成: SpyTag / SpyCatcher 反應,泛素化等。
6	Chemistry of enzymes and coenzymes
0	1. Enzymes and catalysis
	2. Chemistry of selected coenzymes
	3. Michaelis-Menton Kinetics
	4. Catalytic antibodies
6	酶和輔酶的化學
	1. 酶與催化
	2. 代表性輔酶的化學
	3. Michaelis-Menton 動力學
	4. 催化性抗體
7	Chemical Biology of Carbohydrates
	1. Monosaccharides: structure and reactivity
	2. Oligosaccharides and polysaccharides
	3. Enzymatic reactions of carbohydrates
	Midterm Examination (Weeks 1-6)
7	碳水化合物的化學生物學
	1. 單醣:結構和反應性
	2. 寡糖和多醣
	3. 碳水化合物的酶促反應
	期中考試(1-6週)
8	From genes to proteins
	1. DNA Replication and RNA Transcription
	2. Structure of DNA
	3. Structure of RNA
0	4. Synthesis of proteins by protein translation
8	蛋白質的生物合成
	1. DNA 複製和 RNA 轉錄

	2. DNA 的結構
	3. RNA 的結構
0	4. 蛋白質轉譯和合成
9	Directed Evolution
	1. Directed Evolution of Nucleic Acids and Enzymes
	2. Nucleic acid selection (SELEX)
	3. Protein evolution to screen for novel properties (Phage-display, Yeast display, <i>E.</i>
0	coli display, mRNA display)
9	定向進化
	1. 核酸和酶的定向進化
	2. 核酸選擇(SELEX)
	3.蛋白質進化及新特性篩選(噬菌體展示,酵母展示,大腸桿菌展示,mRNA 展
	示)
10	Incorporating unnatural amino acids into proteins
	1. Evolution of tRNA synthetases for incorporation of UAAs
	2. Use of the pyrrolysine tRNA/tRNA synthetase for UAA incorporation
	3. Application of UAA incorporation for biological and biotechnological studies
10	蛋白質中非天然氨基酸的納入
	1. tRNA 合成酶的進化和 UAA 納入
	2. 吡咯賴氨酸 tRNA / tRNA 合成酶在 UAA 納入中的使用
	3. UAA 納入在生物和生物技術研究的應用
11	Special Topics (Novel Roles of Metals in Biology)
	1. Zinc and magnesium ions in hydrolytic reactions (metalloproteases, polymerases)
	2. Heme and non-heme iron proteins
	3. Nickel ions in organometallic reactions
	4. Molybdenum and tungsten containing enzymes
	5. cis-Pt(NH ₃) ₂ Cl ₂ as an anticancer therapeutic
11	專題研究 (金屬在生物學中的新作用)
	1. 水解反應中的鋅和鎂離子(金屬蛋白酶,聚合酶)
	2. 血紅素和非血紅素鐵蛋白
	3. 有機金屬反應中的鎳離子
	4. 含鉬和鎢的酶
	5. cis-Pt(NH ₃) ₂ Cl ₂ 作為抗癌藥
12	Special Topics (Protein therapeutics and protein delivery)
	1. Antibodies
	2. CRISPR (Gene editing)
	3. Transcription Factors (Cellular Reprogramming)
	4. Strategies for overcoming the barriers to cellular delivery
12	專題研究 (蛋白質治療和蛋白質遞送)
	1. 抗體
	2. CRISPR(基因编辑)
	3. 轉錄因子(細胞重新編程)
	4. 克服細胞遞送障礙的策略
13	Review and Final Examination (Weeks 7-12)
13	評論和期末考試(7-12週)

4-5 Page Written Essay

Students will need to complete a 3-5 page (single spaced text, 12 point, Times New Roman, 1" margins, figures included) proposal for a project based on the chemical biology techniques and problems learned in class or from external reading. The main text should include Specific Aims, Introduction, and Research Plan. One additional page of supporting figures and tables is allowed,

along with additional pages for references (include full paper titles). The topic is open, but students are encouraged to discuss with the professor for guidance.

Midterm

The midterm will be short answer and focus on the general principles used in chemical biology to elucidate biological questions.

Assessment: Midterm Examination: 25% Final Examination: 35% Written Proposal: 40%

Assessment Type	Percentage
Attendance	
Classwork	
Discussion	
Essay test or exam	
Essays	40%
Fieldwork or field study	
Homework or assignment	
Lab reports	
Micro-teaching	
Online discussion/forum	
Other	
Participation	
Participation or attendance	
Presentation	
Project	
Report	
Selected response test or exam	
Short answer test or exam	60%
ГОТАL	100%

Assessment Type and Percentage (For CUSIS)

Feedback for Evaluation (English)

- 1. Feedback from course evaluation
- 2. Discussion with students
- 3. Self reflection of teacher(s)
- 4. Feedback from Visiting Committee & regular program reviews

Feedback for Evaluation (English)

1.課目評鑑 2.與學生會談 3.教師反饋 4.校外專家委員會及課程檢討

Required Readings

Recommended Readings

Grade Descriptors

Grade Descripto	Overall Course
A	An outstanding level of attainment of the learning outcomes of the course, i.e., (1) to demonstrate a keen understanding of the key concepts in chemical biology; and (2) to be able to use that knowledge to design strategies to solve biological problems. Grade A is awarded to students with outstanding performance on all learning outcomes, i.e. have the ability to express the synthesis of ideas or application in a clear and cogent manner in the quiz/assignments and final examination
A	課程學習成果達到的傑出水平,即(1)對化學生物學的關鍵概念有敏 銳的理解;(2)能夠利用這些知識來設計解決生物學問題的策略。成 績 A 授予在所有學習成果上表現優異的學生,即具有在測驗/作業和期 末考試中以清晰,有說服力的方式表達思想或應用的綜合能力的學生
A-	A superior level of attainment of the learning outcomes of the course as listed above. Grade A- is awarded to students with generally outstanding performance on all (or almost all) learning outcomes, i.e., have the ability to express the ideas and knowledge with clarity in the quiz/assignments and final examinations.
A-	達到上述課程學習成果的較高水平。A-級是授予在所有(或幾乎所有)學習成果上通常表現出色的學生,即具有在測驗/作業和期末考試中清晰表達思想和知識的能力。
В	A high level of attainment of the learning outcomes of the course as listed above. Grade B is awarded to students with substantial performance on all learning outcomes, OR high performance on some learning outcomes which compensates for less satisfactory performance on others, resulting in overall substantial performance, i.e. have the ability to express the knowledge in a satisfactory and unambiguous way in the quiz/assignments and final examination.
В	達到上述課程的學習成果的較高水平。B級授予在所有學習成果上表現 出色的學生,或在某些學習成果上表現出色的學生,以彌補對其他學習 成績的不滿意表現,從而總體上取得實質性成績,即在測驗/作業和期 末考試中具有以令人滿意且明確的方式表達知識的能力。
С	A satisfactory level of attainment of the learning outcomes of the course as listed above. Grade C is awarded to students with satisfactory performance on the majority of learning outcomes, possibly with a few weaknesses, i.e. have the ability to express the knowledge in an unambiguous way in the quiz/assignments and final examinations.
С	達到上述課程的學習成果的滿意水平。C級成績授予在大多數學習成績 上表現令人滿意的學生,可能還有一些弱點,即具有在測驗/作業和期 末考試中明確表達知識的能力。
D	A fair level of attainment of the learning outcomes of the course as listed above. Grade D is awarded to students with barely satisfactory performance on a number of learning outcomes, i.e. have the ability to state the knowledge in simple terms in the quiz/assignments and final examinations.

D	達到上述課程的學習成果的合理水平。 D 級成績授予在許多學習成果上 表現差強人意的學生,即能夠在測驗/作業和期末考試中以簡單的方式 陳述知識。
F	An unsatisfactory level of attainment of the learning outcomes of the course as listed above OR failure to meet specified assessment requirements. Failed to give correct answers to most if not all questions in the quiz/assignments and final examinations.
F	上述課程的學習成績達不到令人滿意的水平,或者未達到指定的評估要求。無法對測驗/作業和期末考試中的大多數(如果不是全部)問題給 出正確答案。

NEW Additional Information

Course Attributes

 CU University Theme/Priority

 □
 GLB: Global Citizen and Social Enterprisingness

 ☑
 INN: Innovation and Design

 □
 N/A

CU Research Components (UG)

1% - 49%

□ 50% - 74% □ 75% - 100%

Micro-modules (produced by the course teachers)

eLearning Hours for Blended-mode Class Section Applicable to the blended-mode courses approved by the eLearning Task Force. Total no. of duration: ______ (minutes) ☑ N/A

Faculty Package Courses

□ This new course is a particular course and it is also a Faculty Package Course. ☑ N/A

Course Attribute – Faculty Package	Course Attribute Value
TFAC (Faculty Package Course)	□ SCF (Faculty of Science)
☑ N/A	☑ N/A

The Chinese University of Hong Kong School of Life Sciences Biochemistry Programme

BCHE 3650 Molecular Biology Laboratory

2018-19, 2nd Term

Periods: Thursday (2:30 -6:15p.m.) Location: Science Center East Block SCE402 and SCE 408 **Web page: https://elearn.cuhk.edu.hk/webapps/login**

Course coordinator

Prof. PC Shaw	SC180	39436803	pcshaw@cuhk.edu.hk
Technical staff			
Liang Yiu Hon (Eric)	MMW601	39436052	ericliang@cuhk.edu.hk

Demonstrators:

Name		Lab.	Email	Tel.
Zhang Wenxi	張文秀	MMW 611	zh_wenxiu@126.com	39436363
Li Yiqian	李宜褰	MMW 507E	liyiqian1994@gmail.com	39436115
Lu Jiaqi	魯家琪	SC 195	lujq5@mail2.sysu.edu.cn	39438027
Kong Lim Ho	江鎌浩	SC 195	konglimho@yahoo.com.hk	39438027
Yu Mei Hui	餘美慧	RRSSB G02	cketnn7@hotmail.com	39431271
Li Qingyun	李慶云	SRSSB 118	1192152176@qq.com	39431349
Zheng Jiale	鄭嘉樂	MMW 611	kalok2609@outlook.com	39436363
Zhai Yuqi	翟雨琪	SC 294	354722951@qq.com	39436119
Zhao Limin	趙麗敏	SC G96	lmzhao31@link.cuhk.edu.hk	39431008

Marking Scheme

Lab performance 10 % Lab reports 25 % Pre-class exercise 10% Pre-lab quiz 10% Examination 45%

Experiment Schedule 2019 for Student

Date	Experiment	Content	Demonstrator(s) in charge
Jan. 10		Check in	All
Jan. 24	1	DNA Extraction and Polymerase chain reaction	Lu Jiaqi (In charge) Li Yiqian
Jan. 31	2	Recombinant DNA construction	Yu Mei Hui (In charge)
Feb. 14	3	DNA transformation into E. coli.	Zhang Wenxiu
Feb. 21	4 and	Plasmid preparation (Part I)	Zheng Jiale
	5		
Feb. 28	4 and 5	Plasmid preparation (part II) DNA Sequencing and Blast Search	Zheng Jiale Zhai Yuqi (In charge) Zhao Limin
Mar. 7	6	Gene Expression study by Real Time PCR (part I)	Kong Lim Ho (In charge) Li Qingyun
Mar. 14	6	Gene Expression Study by Real Time PCR (part II)	Kong Lim Ho (In charge) Li Qingyun
Mar. 28		Lab Discussion	All
April. 11		Lab Examination	All

Grade Descriptors for BCHE3650

Grade	Overall course
А	Demonstrates the ability to synthesize and apply the principles or techniques
	learnt in the course, to novel situations, in a manner that would surpass the
	normal expectation at this level, and typical of standards that may be common at
	higher levels of study or research.
	Has the ability to express the synthesis of ideas or application in a clear and
	cogent manner.
A-	Demonstrates the ability to state and apply the principles or techniques learnt in
	the course to familiar and standard situations in a manner that is logical and
	comprehensive.
	Has the ability to express the knowledge or application with clarity.
В	Demonstrates the ability to state and partially apply the principles or techniques
	learnt in the course to most (but not all) familiar and standard situations in a
	manner that is usually logically persuasive.
	Has the ability to express the knowledge or application in a satisfactory and
	unambiguous way.
С	Demonstrates the ability to state and apply the principles or techniques learnt in
	the course to most (but not all) familiar and standard situations in a manner that
	is not incorrect but is somewhat fragmented.
	Has the ability to express the separate pieces of knowledge in an unambiguous
	way.
D	Demonstrates the ability to state and sometimes apply the principles or
	techniques learnt in the course to some simple and familiar situations in a
	manner that is broadly correct in its essentials
	Has the ability to state the knowledge or application in simple terms.
F	Unsatisfactory performance on a number of learning outcomes, OR failure to
	meet specified assessment requirements.

BCHE 3730 Analytical Biochemistry Laboratory (2018-19)

Course Outline

Lab Supervisors:			
Prof. W.P. FONG	MMW 608	3943-6868	wpfong@cuhk.edu.hk
Prof S.K. KONG	MMW 609	3943-6799	<u>skkong@cuhk.edu.hk</u>
Prof S. AU	SC 178	3943-4170	<u>shannon-au@cuhk.edu.hk</u>
Lab Coordinator:			
Anita YIU	SC E412A	3943-6881	<u>anita-garcia@cuhk.edu.hk</u>
Demonstrators:			
TAI Jingxuan	MMW 611	3943-6363	jingxuantai@gmail.com
LIU Shiyue	MMW 610	3943-8034	doraliusy@gmail.com
SUN Kailei	SC 193	3943-6118	kaileisun@gmail.com
LIU Qingsheng	SC 293	3943-8073	lqshbiomedical@hotmail.com
ZHANG Ying	MMW 610	3943-6398	zhangying1130@bjmu.edu.cn
Nathaniel WONG	MMW 611	3943-6363	nathanielwch@gmail.com
Ryan YIP	RRSSB 118	3943-1349	<u>yph1993@yahoo.com.hk</u>

Lab Location:

SC E 402

Lab Time Slot:

2:30 - 6:15 p.m. on WED

BCHE3730 Experiment Schedule

Date	Expt	Content	Demonstrator -in-charge
Jan 9		Check in	
Jan 23 & Jan 30	1	Fluorescence Techniques: (A) The use of Fura-2 for measurement of free calcium ion concentration;	TAI Jingxuan & LIU Shiyue
		Demonstration : Cell death analysis by (B) flow cytometry and (C) fluorescence microscopy	
Feb 27	2	Protein Crystallization	SUN Kailei
Mar 13	3	Separation of sub-cellular components by differential centrifugation	LIU Qingsheng & ZHANG Ying
Mar 20	4	Ion exchange chromatography	Nathaniel WONG
Mar 27	5	Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE)	Ryan YIP
Apr 10		Lab discussion	
Apr 17		Lab examination	

Grading:

Report:	50%
Pre-Lab Quiz:	10%
Performance:	10%
Exam:	30%

Quality Assurance Policies for Course Assessment:

- 1. The course assessment procedures are under the supervision of the Examination Committees of the Biochemistry Programme and the School of Life Sciences.
- 2. The turn-around time for each assignment will be completed within the academic term.
- 3. All students are given access to their examination scripts.

Lab-Log and Lab Report (50%)

Reports are in write-up form format and have to be submitted, with an **Academic Honesty Declaration form,** before 5 pm on the following Wednesday. Marks will be deducted for overdue reports (10% per day). Without prior approval from the course coordinator, no assignment can be submitted if he/she fails to attend a lab session.

Students are required to submit both the hard copy and soft copy of each report to the collection box outside SC191 & to Blackboard eLearn (https://blackboard.cuhk.edu.hk/) respectively. The Academic Honesty Declaration form can be downloaded at the website: http://www.cuhk.edu.hk/policy/academichonesty/Eng htm files (2013-14)/declaration en.doc

Pre-Lab Quiz (10%)

Students will be given a short 5-minute quiz at 2:30 pm on each experimental day. The material covered will be those in the laboratory manual and designated videos.

Performance (10%)

Every student is required to attend all lab sessions. No make-up laboratory session will be arranged in the course. Absence will lead to a zero mark for performance for the missed experiment. Students have to notify the course coordinator at least one week in advance to apply for leave. Proof, such as medical certificates, is required for successful leave application.

Students must follow instructions given by the course coordinator and the demonstrators during lab sessions. Violation of safety guidelines or improper handling of equipment may lead to a -1% of penalty mark to the assessment of performance.

Exam (30%)

A closed-book exam will be held, covering all 5 experiments. Duration of the exam will be 1.5 hours.

The Chinese University of Hong Kong places very high importance on honesty in academic work submitted by students, and adopts a policy of zero tolerance on cheating in examinations and plagiarism. Any related offence will lead to disciplinary action including termination of studies at the University.

(http://www.cuhk.edu.hk/policy/academichonesty/)

Grade	Overall Course
	• Demonstration of excellent understanding of the strategies and design of
	experiments in the analysis of biochemical molecules;
	 Demonstration of excellent understanding of the utilization of analytical
А	equipment in the analysis of biochemical samples;
	 Demonstration of excellent laboratory skills;
	• Demonstration of excellent ability in data analysis and interpretation of
	experimental results.
	• Demonstration of very good understanding of the strategies and design of
	experiments in the analysis of biochemical molecules;
	• Demonstration of excellent understanding of the utilization of analytical
A-	equipment in the analysis of biochemical samples;
	Demonstration of very good laboratory skills;
	• Demonstration of excellent ability in data analysis and interpretation of
	experimental results.
	• Demonstration of good understanding of the strategies and design of experiments
	in the analysis of biochemical molecules;
В	• Demonstration of good understanding of the utilization of analytical equipment
	in the analysis of biochemical samples;
	Demonstration of good laboratory skills;
	Demonstration of good ability in data analysis and interpretation of experimental
	• Demonstration of satisfactory understanding of the strategies and design of
	experiments in the analysis of biochemical molecules;
С	 Demonstration of good understanding of the utilization of analytical equipment in the analysis of biochemical samples;
L	 Demonstration of satisfactory laboratory skills;
	 Demonstration of satisfactory ability in data analysis and interpretation of
	• Demonstration of satisfactory ability in data analysis and interpretation of experimental results.
	 Demonstration of minimal understanding of the strategies and design of
	experiments in the analysis of biochemical molecules;
	 Demonstration of fair understanding of the utilization of analytical equipment
D	in the analysis of biochemical samples;
	 Demonstration of minimal laboratory skills;
	• Demonstration of minimal ability in data analysis and interpretation of
	experimental results.
	• Demonstration of poor understanding of the strategies and design of experiments
	in the analysis of biochemical molecules;
F	• Demonstration of poor understanding of the utilization of analytical equipment
	in the analysis of biochemical samples;
	Demonstration of poor laboratory skills;
	• Demonstration of poor ability in data analysis and interpretation of experimental

BCHE4030 Clinical Biochemistry 2018-2019

Course Code:	BCHE4030 (3 Units, Second Term)
Period:	M5 (12:30pm – 1:15pm); W1-2 (8:30am - 10:15am)
Venue:	SC L4
Medium of Instruction:	English

Teachers:

FH Lo	MMWB Rm 507B, Tel: 3943-5019, e-mail: lofaihang@cuhk.edu.hk
SK Kong (Coordinator)	MMWB Rm 609, Tel: 3943-6799, e-mail: <u>skkong@cuhk.edu.hk</u>

Objectives:

This course presents the basic principles in clinical biochemistry and its methodology. Test of functions, biochemical profiles involved in pathogenesis, diagnosis and management of some diseases will be described.

Learning Outcomes:

After completing the course, students should be able to:

- Acquire core knowledge on clinical biochemistry,
- Understand the relationship of biochemistry to clinical problems;
- Appreciate the applications of biochemistry to modern medicine;
- Applying knowledge of clinical chemistry for diseases diagnosis;
- Develop generic skills such as critical thinking, writing & life-long learning skills and team spirit.

Wk	Date/2019 *: Quiz	Hr.	Topics	Teacher
			eAdd-Drop: 14-20 Jan 2019	
1	Jan 7 (M)	1	Introduction to Clinical Biochemistry	LFH (25)
	Jan 9 (W)	2	Revision of Analytical Methods	
2	Jan 14 (M)	1	Biochemical Endocrinology	
	Jan 16(W)	2	Principles of Endocrine Disorders	
3	Jan 21 (M)	1	Laboratory Investigations of Endocrine Disorders	
	Jan 23 (W)	2	Metabolic Aspects of Malignant Diseases	
4	Jan 28 (M)	1	Liver Functions	
	Jan 30 (W)	2	Liver Diseases and Biochemical Investigations	
			Blood Cells, Plasma Proteins and Enzymes I	
	Feb 4 (M)		No-Class/Chinese New Year Holiday	
	Feb 6 (W)			
5	Feb 11 (M)	1	Blood cells, Plasma Proteins and Enzymes II	
	Feb 13 (W)	2	Haemostasis and Thrombosis	
6	Feb 18 (M)	1	Blood Disorders and Tests	
	Feb 20 (W)	2	Renal Functions and Bone Profile	
			Iron Profile, Lipid Profile, and Cardiac Markers	
7	Feb 25 (M)	1	Electrolytes and Water Balance	SKK (15)
	Feb 27 (W)*	2	Electrolytes and Water Balance	
8	Mar 4 (M)	1	Tutorial	
	Mar 6 (W)	2	Mid-Term Test I	
9	Mar 11 (M)	1	Tutorial	
	Mar 13 (W)	2	Mid-Term Test II	
10	Mar 18 (M)	1	Disorders of Electrolytes and Water Balance	
	Mar 20 (W)	2	Disorders of Electrolytes and Water Balance	
11	Mar 25 (M)	1	Quiz I	
			Acid-Base Regulation	
	Mar 27 (W)	2	Acid-Base Regulation	
	Apr 1 (M)		No-Class/Easter Holiday Reading Week	
	Apr 3 (W)			
12	Apr 8 (M) *	1	Disorders of Acid-Base	
	Apr 10 (W)	2	Disorders of Acid-Base	
13	Apr 15 (M)	1	Quiz II	
			Development of New Clinical Biochemistry Assays	
	Apr 17 (W)	2	Development of New Clinical Biochemistry Assays	
			Course Evaluation (10:00 am – 10:15 am)	

References:

George J. Netto, Rana D. Saad, Peter A. Dysert, II. <u>Diagnostic molecular pathology: current techniques and clinical applications, part I</u>. Proc (Bayl Univ Med Cent) 2003 October; 16(4): 379–383. (<u>http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1214554/</u>)

Other reference materials will be provided by teachers.

Textbooks: (All are reserved in the Library)

- Herbert Waldmann & Petra Janning. Concepts and case studies in chemical biology. (online)
- John W Baynes & Marek H Dominiczak. Medical Biochemistry, 5th ed. (online)
- Lela Buckingham & Maribeth L. Flaws. Molecular Diagnostics: Fundamentals, Methods, & Clinical Applications. (online)
- Michael Lieberman et al. Marks' basic medical biochemistry: a clinical approach, 4th ed. (online)
- Victor Hoffbrand & Paul Moss. Essential Haematology, 6th ed. (online)
- William J Marshall & Stephen K Bangert. Clinical Chemistry, 6th ed. (online)
- Michael Laposata. Laboratory Medicine The Diagnosis of Disease in the Clinical Laboratory, 2nd ed. (UL QY25.L285 2014)
- Nessar Ahmed. Clinical Biochemistry. (QU4 .C55 2011) (Medical Library)
- Philip D. Mayne. Clinical Chemistry in Diagnosis and Treatment, 6th ed. (QY90.Z54 1994)
- Shauna C. Anderson & Susan Cockayne. Clinical Chemistry: Concepts and Application. (UL Oversize QY90 .C6423 2007)

Assessment:

Mid-term Test I:	Short Questions (close-book format) 30% final mark
Mid-term Test II:	MCQ (close-book format) 20% final mark
Quiz I:	10% final mark (SKK materials) (Close-book format)
Quiz II:	10% final mark (SKK materials) (Close-book format)
Final examination:	30% final mark (SKK materials, Open-notes exam: Two A4 pages all you can write and print.)

Quality Assurance Policies for Course Assessment:

- 1. The course assessment procedures are under the supervision of the Examination Committees of the Biochemistry Programme and the School of Life Sciences.
- 2. The turnaround time for each assignment will be completed within the academic term.
- 3. All students are given access to their examination scripts.

Academic Honesty

Attention is drawn to University policy and regulations on honesty in academic work, and to the disciplinary guidelines and procedures applicable to breaches of such policy and regulations. Details may be found at http://www.cuhk.edu.hk/policy/academichonesty/. For ALL written assignment, students will have to submit a statement that they are aware of these policies, regulations, guidelines and procedures. <u>Warning: plagiarism could lead to serious consequences!</u>

BCHE4030 Grade Descriptors

Grade	Overall Course
	 Outstanding achievement of all the stated learning outcomes;
	Demonstration of excellent understanding of biochemistry knowledge for solving clinical
	problems;
А	 Demonstration of excellent understanding of the social impact of biochemistry on modern
	medicine;
	 Demonstration of excellent knowledge of clinical chemistry for diagnosis;
	Demonstration of excellent generic skills;
	 Outstanding achievement of all the stated learning outcomes;
	Demonstration of excellent understanding of biochemistry knowledge for solving clinical
	problems;
A-	Demonstration of excellent understanding of the social impact of biochemistry on modern
	medicine;
	Demonstration of excellent knowledge of clinical chemistry for diagnosis;
	Demonstration of very good generic skills;
	Good achievement of all the stated learning outcomes;
	Demonstration of excellent understanding of biochemistry knowledge for solving clinical methameters
В	problems;
Б	 Demonstration of very good understanding of the social impact of biochemistry on modern medicine;
	 Demonstration of very good knowledge of clinical chemistry for diagnosis;
	 Demonstration of very good generic skills;
	 Satisfactory achievement of all the stated learning outcomes;
	 Demonstration of satisfactory to good understanding of biochemistry knowledge for solving
	clinical problems;
С	 Demonstration of good understanding of the social impact of biochemistry on modern medicine;
	• Demonstration of satisfactory to good knowledge of clinical chemistry for diagnosis;
	Demonstration of satisfactory generic skills;
	Fair achievement of all the stated learning outcomes;
	• Demonstration of minimal understanding of biochemistry knowledge for solving clinical
	problems;
D	• Demonstration of fair to satisfactory understanding of the social impact of biochemistry on
	modern medicine;
	 Demonstration of minimal knowledge of clinical chemistry for diagnosis;
	Demonstration of minimal generic skills;
	 Poor achievement of all the stated learning outcomes;
	Demonstration of poor understanding of biochemistry knowledge for solving clinical problems;
F	Demonstration of poor to fair understanding of the social impact of biochemistry on modern
1	medicine;
	 Demonstration of poor to good knowledge of clinical chemistry for diagnosis;
	Demonstration of poor generic skills;

BCHE4040 Aspects of Neuroscience (2018-19, 1st Term)

Description

This course will discuss the structure and components of nervous tissue in relation to its functions. Aspects of metabolism special to the nerve and brain will be examined. These include energy metabolism, water and electrolyte balance, exchanges between blood and brain, and between brain and cerebrospinal fluid, neurotransmitters and modulators, nutrition and development of the nervous system, neuroendocrinology and the biochemistry of mental diseases. Students are advised to take BCHE2030 or equivalent before taking this course.

Contents/Fundamental Concepts

- 1. Structure and function of the central nervous system.
- 2. Cells of the nervous system
- 3. Myelin;
 - a. Structure and function
 - b. Biosynthesis and genes regulating its biosynthesis
 - c. Diseases related to myelin dysfunction, eg, multiple sclerosis
- 4. Biochemistry, physiology and pharmacology of transport system:
 - a. Blood-brain-CSF barriers
 - b. Cellular (Membrane) transport
 - c. Axoplasmic transport
 - Ion channels, potentials and signal conduction
- 6. Metabolism:

5.

7.

- a. Brief review of brain metabolism
- b. Some inherited neurological diseases related tometabolic disorders
- c. Nutrition and brain function
- Biochemistry, physiology and pharmacology of synaptic transmission:
 - a. Classification of neurotransmitters
 - b. Biosynthesis of transmitters and their regulation
 - c. Termination of neurotransmission
 - d. Properties and molecular biology of receptors
 - e. 2nd messengers and signal transduction
 - f. Modulation of signal transmission
- 8. Biochemistry and molecular biology of neurological and psychiatric disorders
 - a. Myasthenia gravis
 - b. Parkinson's disease
 - c. Alzheimer's disease
 - d. Huntington's disease
 - e. Affective disorders and schizophrenia

Learning Outcomes

After reading this course, students are expected be able to:

- Outline the special features of the nervous system and its components.
- Describe the functions of the nervous system both at the cellular and molecular levels.
- Explain how neurons communicate with each other in cellular and molecular terms.
- Explain the pathophysiology of certain neurological and neuropsychiatric disorders, and the biochemical basis of treating them.

BCHE4040 Aspects of Neuroscience (2018-19, 1st Term)

Assessment Scheme

Mid-term Exam 45% Final Exam 55%

Grade Descriptors

Grade	Overall course
A	Demonstrates a deep understanding of the structure and components of nervous tissue in relation to its functions, neurotransmitters, development of the nervous system and the biochemistry of mental diseases. Demonstrate the ability to apply the concepts to solve most neuroscience issues in particular in the area of neuro-diseases that would substantially surpass the normal expectation at this level and typical of standards that may be common at higher levels of study. Demonstrates the ability to articulate the synthesis of new ideas or applications in a clear and cogent manner.
A-	Demonstrates high level of the structure and components of nervous tissue in relation to its functions, neurotransmitters, development of the nervous system and the biochemistry of mental diseases. Demonstrate the ability to apply the concepts to solve some neuroscience issues in particular in the area of neuro-diseases. Demonstrates the ability to articulate the synthesis of new ideas or applications in a clear and cogent manner.
В	Demonstrate a competent grasp of the key concepts in the structure and components of nervous tissue in relation to its functions, neurotransmitters, development of the nervous system and the biochemistry of mental diseases. Demonstrates the ability to state and partially apply the subject matter learnt in the course to most (but not all) familiar and standard situations in a manner that is usually logically persuasive. Demonstrate the ability to articulate neuroscience concepts or applications in a logical and coherent way
C	Demonstrate a basic understanding of the structure and components of nervous tissue in relation to its functions, neurotransmitters, development of the nervous system and the biochemistry of mental diseases. Demonstrates the ability to state and apply the subject matter learnt in the course to most (but not all) familiar and standard situations in a manner that is not incorrect but is somewhat fragmented. Shows the ability to articulate scientific concepts in a concise way.
D	Demonstrate the ability to apply certain concepts learnt from the course to simple situations in a manner that is broadly correct in its essentials or is somewhat ambiguous. Demonstrates the ability to state and sometimes apply the subject matter learnt in the course to some simple and familiar situations in a manner that is broadly correct in its essentials.
F	Demonstrate an incomplete or incorrect neuroscience concepts. Unsatisfactory performance on a number of learning outcomes, OR failure to meet specified assessment requirements.

Recommended Readings

- Neuroscience : exploring the brain / Mark F. Bear, Barry W. Connors, Michael A. Paradiso (WL300 .B425 2007)
- Neuroscience / edited by Dale Purves ... [et al.]. (WL102 .N487 2008)
 Neuroscience at a glance / Roger A. Barker, Stephen Barasi ; and neuropharmacology by Michael J. Neal. (WL102 .B326 2008)
- Articles recommended by teachers.

BCHE4040 Aspects of Neuroscience (2018-19, 1st Term)

Name of Lecturer	Office	Tel.	Email
Prof. KF Lau (Course Coordinator)	SC 291	3943 1106	kflau@.cuhk.edu.hk
Prof. Alex Koon	MMW 621	3943 1218	alexkoon@cuhk.edu.hk

Course Schedule

M4 (Mon 11:30 a.m. – 12:15 pm) & H3-4 (Thu 10:30 am – 12:15 pm) Venue: MMW 702

Wk.	Date	Hr.	Торіс	Teacher
	<mark>Sept. 3*(M)</mark>	0	Structure and function of the central nervous system	
1	Sept. 6 (H)	2	 Cells of the nervous system: neuron, Schwann cells and 	
			astrocytes	
	Sept. 10 (M)	1	• Myelin	
2	Sept. 13 (H)	2	 Biochemistry, physiology and pharmacology of transport 	
			system:	Prof. Alex
	Sept. 17 (M)	1	a. Blood-brain-CSF barriers	Koon
3	Sept. 20 (H)	2	b. Cellular (Membrane) transport	
_	Sept. 24 (M)	1	c. Axoplasmic transport	
4	Sept. 27 (H)	2	 Ion channels, potentials and signal conduction 	
_	<mark>Oct. 1* (M)</mark>	0		
5	Oct. 4 (H)	2	Mid-term Exam	
	Oct. 8 (M)	1		
6	Oct. 11 (H)	2	 Biochemistry, physiology and pharmacology of synaptic 	
			transmission	
-	Oct. 15 (M)	1	 Classification of neurotransmitters 	
7	Oct. 18 (H)	2	 Biosynthesis of transmitters and their regulation 	
_	Oct. 22 (M)	1	Termination of neurotransmission	
8	Oct. 25 (H)	2	 Properties and molecular biology of receptors 	
	Oct. 29 (M)	1	 Second messenger and signal transductioin 	Prof. KF Lau
9	Nov. 1 (H)	2	 Modulation of signal transmission 	
	Nov. 5 (M)	1	 Biochemistry and molecular biology of neurological and 	
10	Nov. 8 (H)	2	Psychiatric disorders	
	Nov. 12 (M)	1		
11	Nov. 15* (H)	0		
12	Nov. 19 (M)	1		
12	Nov. 22 (H)	2		
13	Nov. 26 (M)	1		
	Nov. 29 (H)	2		
	Total:	35		

*: Class suspension

Sept. 3 – Inauguration Ceremony for Undergraduates

Oct. 1 – Public Holiday–National Day Nov. 15 – 85th Congregation

Special arrangement

Nov 5

Nov 8

Reminders:

Academic Honesty: According to University regulations, students must submit an electronic version of their assignment to VeriGuide system for the purpose of checking for possible plagiarism. Read the University's policies on plagiarism carefully and do not plagiarise! CUHK has adopted a policy of zero tolerance for plagiarism. Instructors will send all suspected cases of plagiarism directly to the disciplinary committee for investigation. In the case of group report, plagiarism will affect all partners! Students submitting assignment done by third party is also a serious misconduct and regarded as fraud or academic dishonesty. The updated Procedures are available at the University's website "Honesty in Academic Work: A Guide for Students and Teachers" (http://www.cuhk.edu.hk/policy/academichonesty/). Students please note the aforementioned marking scheme, grade descriptors, academic honesty principle and the university penalty guideline are all applicable to this course. General university regulations are available on line: http://www.res.cuhk.edu.hk/en-gb/general-information/university-regulations

BASIC AND APPLIED IMMUNOLOGY 2018 - 2019

Course Code: BCHE4060 (3 Units, First Term) Period. W3-4 (10:30 am - 12:15 pm); F3 (10:30 am - 11:15 am) Venue: SC L2 Medium of Instruction: English

Objectives:

This course aims at providing students with the essential concepts of basic and applied immunology. Topics to be covered include architecture and development of the immune system, antigens and antibodies, immunoglobulin-genes and -diversity, the major histocompatibility system and T cell receptors, tolerance and autoimmunity, and integration of immune responses. The effector mechanisms of the immune system will be introduced, with special emphasis on the role of innate and acquired immunity in health and disease. The relationship of immunology to clinical problems of infectious disease, immunodeficiency, hypersensitivity, transplantation and cancer will be discussed. The applications of immunology to modern medicine and biotechnology, including vaccination, monoclonal antibody production and antibody engineering will also be covered.

Learning Outcomes:

After completing the course, students should be able to:

- Have an in-depth knowledge of the key features of the immune system;
- Comprehend the integrated nature of the immune system;
- Understand the molecular and cellular basis for the generation of antibody diversity, activation of an immune • response and its regulation, and maintenance of self-tolerance;
- Define the immunological mechanisms underlying the process of inflammation in states of health and disease; .
- Appreciate the relevance of the immune system to our daily lives and its application in advancing biomedical research and biotechnology;
- Develop competencies in finding, reading and critically evaluating relevant scientific literature:
- Develop generic skills such as critical thinking, writing and lifelong learning skills.

Lecturers:

SK Kona MMWB Rm 609, Tel: 3943-6799, e-mail: skkong@cuhk.edu.hk Iris Pang SC 138, Tel: 3943-1393, email: irispang@cuhk.edu.hk

Reference Textbooks: (Some are reserved in the University Library)

- 1. Punt, Stranford, Jones, Owen (2018) Kuby Immunology (8th Ed) Macmillan (Published in Summer 2018)
- 2. Owen, Punt & Stranford (2013) Kuby Immunology (7th Ed) Macmillan (QW504.K83 2013)
- Kindt, Goldsby & Osborne (2007) Kuby Immunology (6th Ed) Freeman (QW504.K83 2007)
 Murphy *et al.* (2017) Janeway's Immunobiology (9th Ed) Garland Science. (QW504.J37 2017)
- 5. Abbas, Lichtman, and Pillai (2012) Cellular and Molecular Immunology (7th Ed) Saunders. (QW568.A23 2012) [Cellular and Molecular Immunology (2nd Ed) **Full text available online** via ClinicalKey Books through CUHK Library] 6. Doan *et al.* (2013) Immunology (2nd Ed) Lippincott Williams & Wilkins (QW518.2.I55 2013)
- 7. Coico & Sunshine (2009) Immunology: A Short Course (6th Ed) Wiley-Blackwell (QW504.B35 2009)
- [Immunology: A Short Course (7th Ed) Full text available online via ProQuest Ebook Central through CUHK library] 8. Male, Brostoff, Roth & Roitt (2013) Immunology, (8th Ed) Mosby. (QW504.R65 2013)
- [Full text available online via ClinicalKey Books through CUHK Library]

eLearning Materials:

• Nature Immunology - Immunology of the skin: https://vimeo.com/87645793

A number of immunocytes and their functions can be seen in this 7-min animation.

• Nature Immunology - Immunology of the Gut Mucosa: https://vimeo.com/59633140

In this 7-min animation, you can see how dendritic cells start an immune response in gut or keep the response at a quiescent state. With bacterial invasion, you can see how neutrophils use special weapon to destroy the bacteria too.

- Nature Immunology Immunology Wars: https://vimeo.com/215319937
 In this 3-min video, you will see how the monoclonal antibodies provide protections to destroy cancer cells with T-lymphocytes.
- Nature Immunology Innate lymphoid cells: http://www.nature.com/ni/multimedia/ilc/index.html In this 4.5-min video, you will see how different types of immune cells including Innate lymphoid cells (ILCs), a recently found immunocyte population, work together using interlukines to provide barrier, tolerance, pathogen clearance and chronic inflammation functions in our gut.
- Panopto videos through CUHK Blackboard eLearning system

Micromodules on various immunology topics related to this course are accessible through the course's Blackboard eLearning platform.

• Videos (5-10 minutes each) for laboratory techniques: Biochemistry is a practical science. Learning the laboratory techniques and skills is an important element in the biochemistry curriculum. Laboratory techniques (e.g. ELISA), skills for data presentation and self-study skills are available at http://www.bch.cuhk.edu.hk/learnbiochem/) (Login: elearnbch1; Password: learn@slsbch!).

Assessment Scheme:

Quizzes [3 total (close-book)]	15% final mark
Micromodules & online questions	5% final mark
Term paper assignment	10% final mark
Mid-term examination (open-book examination)	30% final mark
Final examination (close-book. One A4-paper of notes permitted)	40% final mark

In-class quizzes (15% total grade)

There are 3 quizzes for this course (5% final mark each). The quizzes are part of the learning process. The questions are set to help you think about the important issues raised by the course materials and help you pin down the key items to be learned. Answers will be discussed when the quiz is marked. This feedback arrangement hopefully can correct the misunderstanding of the concept as early as possible.

Micromodules & online questions (5% total grade)

Micromodules on different topics related to immunology are posted on the course's Blackboard eLearning website via the Panopto video platform. You can view the videos anytime and as many times as you prefer. However, full marks will only be given upon successful completion of the full length of the video from start to finish (4% total) and the accompanying online test questions (1% total) before the day of the course. For example, if the video is 10 minutes long, marks will <u>not</u> be given if you access the video 10 times, each time consisting of 1 min.

Term Paper Assignment (10% total grade)

Write a term paper on the following:

- To apply immunology concepts as tools for understanding real-world phenomena.
- What you need to do is to use the knowledge of immunology to explain 2 pieces of experience in our daily life. **Guidelines:**
 - Four students in one group will prepare 2 phenomena in 2 slides (in .ppt or .pptx format).
 - (To train your teamwork spirit, a group with less than 3 students without prior permission will get 2 final marks deduction.)
 - Below is one example showing how histamine from mast cells gives the Facial Flushing after drinking alcohol.
 - On a 3rd slide, put down your name & student ID and add one statement for academic honesty.
 - Upload your term paper (3 slides) to Blackboard (https://elearn.cuhk.edu.hk/).
 - Deadline: 5:00 pm, 3 Nov 2018 (Late submission: mark deduction: 1 final mark/day.)
 - Academic Honesty: Attention is drawn to University policy and regulations on honesty in academic work, and to the disciplinary guidelines and procedures applicable to breaches of such policy and regulations. Details may be found at http://www.cuhk.edu.hk/policy/academichonesty/. With each assignment, students will be required to submit a statement that they are aware of these policies, regulations, guidelines and procedures.

Experience in Our Daily Life

Facial Flushing after Drinking Alcohol: Histamine Release from Mast Cells

East Asians have mutation/SNP in ALDH2 (a glutamine (487) to tysine) → Loss Function.

- ALDH2 variant cannot convert acetaldehyde to acetic acid.
- ROH consumption → Acetaldehyde 1 → Mast cells → Histamine Release
 → A Blood vessel permeability → Facial flushing (面部潮紅), nausea, headache

Acetaldehyde induces histamine release from human airway mast cells to cause <u>bronchoconstriction</u>. Int Arch Allergy Immunol. 2004 Jul;134(3):233-9.

Grade Descriptors for BCHE4060:

Grade	Overall Course Expectations
A	 Consistently excellent performance on all learning outcomes Be able to apply concepts learnt in class to tackle challenging immunology problems in a manner that exceeds normal standards expected for the majority of students in an upper-level undergraduate science course Demonstrates the ability to identify relationships and synthesize new ideas that connect the immunological principles introduced in class Has the ability to integrate knowledge of the different components of the immune system to understand their holistic contribution to immunity and disease
A-	 Excellent performance on almost all learning outcomes Demonstrates the ability to express, clarify and analyze immunological concepts and their applications logically and comprehensively Be able to apply concepts learnt in class in a way that not only fulfills the normal expectations, but occasionally goes beyond the normal expectations
В	 Substantial performance on all or almost all learning outcomes Demonstrates the ability to recall, describe and analyze immunological concepts and their applications in an unambiguous manner Be able to apply concepts learned in class to tackle standard immunology problems logically and in a way that fully meet the expectation for the majority of students in an upper-level undergraduate science course
С	 Satisfactory performance on the majority of learning outcomes Demonstrates the ability to recall and state most (but not all) immunological concepts and their applications in a satisfactory manner Be able to express and apply separate or fragmented pieces of immunology knowledge learned in class to solve familiar immunological problems
D	 Barely satisfactory performance on a number of learning outcomes Demonstrates the ability to recall and state immunology principles in simple terms Be able to occasionally apply concepts learned in class to solve familiar immunological problems in a way that is broadly (but not always) correct
F	 Unsatisfactory performance on a number of learning outcomes; <u>OR</u> Failure to meet the specified assessment requirements

Feedback and Evaluation:

Students are welcome to express feedbacks on course contents and learning experience through e-mail to the course teachers. A standard course evaluation questionnaire will be used to collect feedbacks from students at the end of the course.

Posting of Course Contents and Announcements:

Course materials including lectures slides, notes are all provided in the course Blackboard eLearning platform (https://elearn.cuhk.edu.hk/). Students can download the course materials from Blackboard using their student username and password.

Tutorials:

Tutorial 1 & 2 (optional): Time & Venue to be announced
Course Outline:

Week	Date	Hrs	Topics	Teacher
1	Sept 5 (Wed)	2	Overview of Our Immune System (2 L)	
	Sept 7 (Fri)	1	Nature of Antigens & Immunogens (1 L)	
2	Sept 12 (Wed)	2	Lymphoid Tissues & Immunocytes (2 L)	
	Sept 14 (Fri)	1	Immunoglobulin Structure & Functions (1 L)	
3	Sept 19 (Wed)	2	Immunoglobulin Structure & Functions (1 L)	
			Antibody Diversity (1 L)	
	Sept 21 (Fri)	1	Antibody Diversity (1 L)	Prof. SK Kong
4	Sept 26 (Wed)*	2	The Major Histocompatibility Complex (2 L)	(18 Lectures)
	Sept 28 (Fri)	1	T Cells & T Cell Receptors (1 L)	
5	Oct 3 (Wed)	2	T Cells & T Cell Receptors (1 L)	
			Integration of Immune Responses (1 L)	
	Oct 5 (Fri)	1	Integration of Immune Responses (1 L)	
6	Oct 10 (Wed)*	2	Integration of Immune Responses (1 L)	
			Immunological Tolerance (1L)	
	Oct 12 (Fri)	1	Immunological Tolerance (1L)	
7	Oct 17 (Wed)		Public holiday – Chung Yeung Festival	
	Oct 19 (Fri)	1	Host Defense Part 1 (1 L)	
8	Oct 24 (Wed)	2	Mid-term Examination	
	Oct 26 (Fri)	1	The Complement System (1 L)	
9	Oct 31 (Wed)	2	Host Defense Part 2 (1 L)	
			Cytokines in Health & Diseases (1 L)	
	Nov 2 (Fri)	1	Cytokines in Health & Diseases (1 L)	
10	Nov 7 (Wed)	2	Emerging Infectious Diseases & Vaccine Strategies (2 L)	Dr. Iris Pang
	Nov 9 (Fri)	1	Emerging Infectious Diseases & Vaccine Strategies (1 L)	(17 Lectures)
11	Nov 14 (Wed)*	2	Allergy & Hypersensitivity Reactions (2 L)	
	Nov 16 (Fri)	1	Allergy & Hypersensitivity Reactions (1 L)	
12	Nov 21 (Wed)	2	Immunodeficiency & AIDS (2 L)	
	Nov 23 (Fri)	1	Immunodeficiency & AIDS (1 L)	
13	Nov 28 (Wed)	2	Transplant Immunology & Immunity to tumors (2 L)	
	Nov 30 (Fri)	1	Immunity to tumors (1 L)	

(*Quiz, 5% final mark each; Format: MCQ, T/F, Short Qs etc.)

Penalty Guidelines of the University's Procedures for Handling Cases of Academic Dishonesty:

"Students submitting assignment done by third party is also a serious misconduct and regarded as fraud or academic dishonesty. The updated *Procedures* are available at the University's website "Honesty in Academic Work: A Guide for Students and Teachers" (<u>http://www.cuhk.edu.hk/policy/academichonesty/</u>).

REMINER: Students please note the aforementioned marking scheme, grade descriptors, academic honesty principle and the university penalty guideline are all applicable to this course. General university regulations are available on line: <u>http://www.res.cuhk.edu.hk/en-gb/general-information/university-regulations</u>; please check them out."

BCHE4070 Management and Accreditation of Biochemical Laboratory (2018-19, 2nd Term)

Time:	Saturday, 2:30 pm - 5:30 pm
Classroom:	LT7, Yasumoto International Academic Park (YIA LT7)
Medium of Instruction:	English
Unit:	3
Minimal Passing Grade:	D

Course Coordination: Prof. SK Kong, MMWB Rm 609, Tel: 3943-6799, e-mail: skkong@cuhk.edu.hk

Course Outline:

The aims of this course are to introduce basic concepts and adequate skills of laboratory management, safety and quality assurance in biochemical laboratories. Special topics such as biochemical testing and manufacturing process, good laboratory practice, laboratory accreditation, genetic testing and experimental protocols and method validation etc, will be discussed. The class will be taught with MSc students under different course code (BBMS6300) and assessment scheme.

Time Tab	le:			
Date	Lecture	Teacher	Title of the Lecture	
12 Jan	1	Dr. Ken YEUNG ¹	Good Manufacturing Practice (GMP)	
19 Jan		No Class (BCHE Picnic	;)	
26 Jan	2	Dr. CM LEE 1	Management of R&D: from People to Lab	
2 Feb	3	Dr. CM LEE 1	Management of R&D: from Lab to Portfolio	
9 Feb		No Class (Public holida	ay)	
16 Feb	4	Dr. Alice WONG ²	Intellectual Property Rights Relevant to Biotechnology	
23 Feb	5	Dr. Alice WONG ²	Enforcement of IPRs, Agreement Basics and Licensing	
2 Mar		Test I (2:30pm-4:30pm) Classroom: Room 703, Mong Man Wai Building		
9 Mar	6	Dr. Henry CHEUNG	Quality Programs for Forensic DNA Laboratory	
16 Mar	7	Dr. William CHO ³	Clinical Laboratory Sciences and Practice	
23 Mar	8	Dr. William CHO ³	Quality Assurance in Clinical Laboratory	
30 Mar	9	Dr. Benson YEUNG ⁴	Accreditation Program of AAALAC International for Care and Use of Laboratory Animals (1)	
6 Apr	10	Dr. Benson YEUNG ⁴	Accreditation Program of AAALAC International for Care and Use of Laboratory Animals (2)	
13 Apr	11	Dr. John HO⁵	Guest Talk - What is accreditation? How laboratory quality management system can ensure the quality of results?	
20 Apr		No Class (Public Holid	ay)	
27 Apr		Test II (2:30pm-4:30pm Classroom: Room 305,) Wu Ho Man Yuen Building	

¹ Office of Research and Knowledge Transfer Services, CUHK

² Intellectual Property Specialist at Albert Wai-Kit Chan Intellectual Property Limited

³ Queen Elizabeth Hospital

⁴ Research and Development Manager at Vanway Pharmaceutical Holdings Ltd.

⁵ Hong Kong Accreditation Service, HKSAR

BCHE4070 Management and Accreditation of Biochemical Laboratory (2018-19, 2nd Term)

Assessments:

Term paper	:	20%
Test I	:	40% (Lectures 1-5)
Test II	:	40% (Lectures 6-10)

References:

To be recommended by individual teachers

Term papers guidelines:

(For details, please go to http://www.bch.cuhk.edu.hk/msc/How_to_write_a_Term_Paper.pdf)

- Write a term paper on a topic taught in BBMS6300. Suggested term paper topics will be uploaded to CU eLearning System. The topic and content of your term paper should be something that you are interested in and want to explore more. You may discuss your term paper with a teacher in your class.
- Not more than <u>4 pages</u> including figures, references, font-size 10, single-line spacing.
- Deadline: Please submit the term paper via CU eLearning System on or before <u>11:55 pm, 13 May 2019</u> (Monday).
- Attention is drawn to University policy and regulations on **honesty in academic work**, and to the disciplinary guidelines & procedures applicable to breaches of such policy & regulations. CUHK places very high importance on honesty in academic work submitted by students, and adopts a policy of zero tolerance on cheating and plagiarism. Students submitting assignment done by third party is also a serious misconduct and regarded as fraud or academic dishonesty. The updated *Procedures* are available at the University's website "Honesty in Academic Work: А Guide for Students and Teachers" (http://www.cuhk.edu.hk/policy/academichonesty/).
- All assignments <u>must FIRST be</u> submitted to VeriGuide (https://academic.veriguide.org/academic/login_CUHK.jspx) for checking of plagiarism. A VeriGuide receipt will be issued by the VeriGuide system upon students' uploading of the soft copy of the assignment online.
- Please attach the SIGNED VeriGuide receipt (sign electronically or scan the signed hardcopy) on the first page of your assignment and submit it through CU eLearning System (https://blackboard.cuhk.edu.hk/ultra/stream) for marking.
- Submission through other means or assignment without VeriGuide receipt will not be marked.
- Term papers submitted after the designated deadline will be penalized accordingly; one-day delay will be penalized for 5% of total marks of the term paper, two-day delay will be penalized for 10% of the total marks, and so on.
- General organization: The following sections should be included in your term paper.
 - (a) Title: Give an informative and concise title.
 - (b) Summary: Give your findings and a summary.
 - (c) Introduction: Give background information and relate the problem(s) you found with the current information.
 - (d) Main body: Present your ideas in a systematic and concise manner. When necessary, supply figures, diagrams and tables with legends, and source of information.
 - (e) Discussion and conclusion: Give a summary of your ideas, and provide thoughtful discussion about the implications of your suggestions.
 - (f) References: Make sure you provide accurate citations with the following format. List references alphabetically. Journal: Yoshida H, Kawane K, Koike M, Mori Y, Uchiyama Y, Nagata S. Phosphatidylserine-dependent engulfment by macrophages of nuclei from erythroid precursor cells. Nature, 2005, 437:754-8. Internet: http://www (Date of access: XX. month year).

Test format:

- Section A: Close-notes test (MCQ / T/F)
- Section B: Open-notes test (Essay / short questions)
- Students need to return answer sheet/book for Section A before they can answer Section B open-notes
 test questions. Students cannot request to review their answers after they have handed in their answer
 sheet/book of Section A. For Section B, students will <u>ONLY</u> be allowed to bring in one piece of A4 paper to the
 examination hall. Students may write down/print out information on both sides of the paper.

BCHE4070 Management and Accreditation of Biochemical Laboratory (2018-19, 2nd Term)

B.Sc. Attributes Table

Graduate Skills	Teaching & Learning	Practice	Assessment
Effective communication (written, oral, interpersonal)	X	X	\boxtimes
Core knowledge literacy	X	X	\boxtimes
Problem solving	X	X	X
Critical thinking and evaluation	X	X	X
Work autonomously	X	X	
Work in teams (with classmate, supervisor & RA etc)			X
Creativity and innovation	X	X	X
Information technology (IT) literacy	X	X	X
Lifelong learning skills	X	X	X
Ethical behaviours in social/professional/work environment		X	X
Responsible, effective citizenship	X	X	\boxtimes

Grade Descriptors

Grade	Overall course
A	Demonstrates the ability to synthesize and apply the principles or subject matter learnt in the course, to novel situations and/or in novel ways, in a manner that would surpass the normal expectation at this level, and typical of standards that may be common at higher levels of study or research. Has the ability to express the synthesis of ideas or application in a clear and cogent manner.
A-	Demonstrates the ability to state and apply the principles or subject matter learnt in the course to familiar and standard situations in a manner that is logical and comprehensive. Has the ability to express the knowledge or application with clarity.
В	Demonstrates the ability to state and partially apply the principles or subject matter learnt in the course to most (but not all) familiar and standard situations in a manner that is usually logically persuasive. Has the ability to express the knowledge or application in a satisfactory and unambiguous way.
С	Demonstrates the ability to state and apply the principles or subject matter learnt in the course to most (but not all) familiar and standard situations in a manner that is not incorrect but is somewhat fragmented. Has the ability to express the separate pieces of knowledge in an unambiguous way.
D	Demonstrates the ability to state and sometimes apply the principles or subject matter learnt in the course to some simple and familiar situations in a manner that is broadly correct in its essentials. Has the ability to state the knowledge or application in simple terms.
F	Unsatisfactory performance on a number of learning outcomes, OR failure to meet specified assessment requirements.

REMINDER: Students please note the aforementioned marking scheme, grade descriptors, academic honesty principle and the university penalty guideline are all applicable to this course. General university regulations are available on line: <u>http://www.res.cuhk.edu.hk/en-gb/general-information/university-regulations</u>; please check them out.

BCHE4080 Biochemistry for Forensic Sciences 2018-19, 1st Term

Course Description:

This course aims at introducing various biochemical principles and techniques for forensic analysis to the students. Students will learn how to observe, collect, analyze and evaluate evidence found at crime scenes. The first part addresses the identification of biological fluids such as blood, semen, and saliva from crime scene. The emphasis will be on the biochemical technologies used in the presumptive and confirmatory tests. The second part covers DNA analysis using RFLP and PCR-STR typing methods, interpretation of DNA typing results, and court presentation of such biological evidence. Mitochondrial DNA typing and Y chromosome DNA typing will also be discussed. It is anticipated that students will apply the biochemistry knowledge they have acquired in junior years in the course.

Learning Outcomes:

After finishing the course, students will be able to:

1) Develop an understanding of the concept and theory of forensic analysis.

- 2) Understand the analytical techniques involved.
- 3) Discuss the application of forensic science to crime detection.

Assessment Scheme:

Mid-term Examination :	10 October (Wednesday)	30%
Final Examination :	14 December (Friday)	70%

Grade Descriptors:

Grade	Overall course
A	Demonstrates a deep understanding of various biochemical principles and techniques for forensic analysis, and how to observe, collect, analyze and evaluate evidence found at crime scenes. Demonstrate the ability to apply different presumptive and confirmatory forensic tests for various samples and novel situations that would substantially surpass the normal expectation at this level and typical of standards that may be common at higher levels of study. Shows evidence of critical evaluation of different approaches to solving forensic problems. Demonstrates the ability to articulate the synthesis of new ideas or applications in a clear and cogent manner.
A-	Demonstrates high level of understanding of various biochemical principles and techniques for forensic analysis, and how to observe, collect, analyze and evaluate evidence found at crime scenes. Demonstrate the ability apply different presumptive and confirmatory tests for some novel samples and situations. Shows evidence of logical analysis of simple forensic problems. Demonstrates the ability to articulate the synthesis of new ideas or applications in a clear and cogent manner.
В	Demonstrate a competent grasp of the key concepts in various biochemical principles and techniques for forensic analysis, and how to observe, collect, analyze and evaluate evidence found at crime scenes. Demonstrates the ability to state and partially apply the subject matter learnt in the course to most (but not all) familiar and standard situations in a manner that is usually logically persuasive. Demonstrate the ability to articulate scientific concepts or applications in a logical and coherent way.

С	Demonstrate a basic understanding of various biochemical principles and techniques for forensic analysis, and how to observe, collect, analyze and evaluate evidence found at crime scenes. Demonstrates the ability to state and apply the subject matter learnt in the course to most (but not all) familiar and standard situations in a manner that is not incorrect but is somewhat fragmented. Shows the ability to articulate scientific concepts in a concise way.
D	Demonstrate the ability to apply certain learnt forensic biochemistry principles to simple situations in a manner that is broadly correct in its essentials or is somewhat ambiguous Demonstrates the ability to state and sometimes apply the subject matter learnt in the course to some simple and familiar situations in a manner that is broadly correct in its essentials.
F	Demonstrate an incomplete or incorrect biochemical principles and techniques for forensic analysis, and how to observe, collect, analyze and evaluate evidence found at crime scenes. Unsatisfactory performance on a number of learning outcomes, OR failure to meet specified assessment requirements.

Learning Resources:

- (1) Forensic Science: From the Crime Scene to the Crime Lab. Richard Saferstein. Pearson 2013 [HV 8073 S214]
- (2) Forensic Science: An Introduction. Richard Saferstein. Prentice Hall 2011 [HV 8073 S214]
- (3) Forensic Biology. Richard Li, CRC press, Taylor and Francis Group 2008 [QH 313.5 F67 L5]
- (4) Advanced Topics in Forensic DNA Typing: Methodology. John M. Butler. Elsevier Academic Press 2012 [electronic resource]
- (5) Fundamentals of Forensic DNA Typing. John M. Butler. Academic Press 2010
- (6) Forensic DNA Typing: Biology, Technology, and Genetics of STR Markers. John M. Butler. Academic Press 2005 [electronic resource]

BCHE4080 Biochemistry for Forensic Sciences 2018-19, 1st Term

Course Schedule:

Wednesday2:30 pm - 4:15 pm(Weeks 1-6)Science Centre (SC) LG23Friday7:00 pm - 9:30 pm(Weeks 7-13)Yasumoto International Academic Park (YIA) LT7

Week	Date	Hour(s)	Topic	Teacher
1	5 Sep (Wed)	2	Introduction to Forensic Sciences	
2	12 Sep (Wed)	2	Forensic Serology & Blood Analysis	
3	19 Sep (Wed)	2	Detection of Saliva, Semen & Other Bodily Fluids	Prof. KF Lau
4	26 Sep (Wed)	2	Forensic Toxicology &	
5	3 Oct (Wed)	0	No Class (Study Week)	
6	10 Oct (Wed)	2	Mid-term Examination	
7*	19 Oct (Fri)	2	Forensic sciences and CSI [#]	
8*	26 Oct (Fri)	2	Development of DNA typing methods, and human DNA extraction and quantitation	
9*	2 Nov (Fri)	2	Forensic genetics and RFLP typing	
10*	9 Nov (Fri)	2	PCR-based typing methods	Prof. Henry Cheung
11*	16 Nov (Fri)	2	Results interpretation and forensic issues	
12*	23 Nov (Fri)	2	Evaluation and court presentation of DNA evidence	
13*	30 Nov. (Fri)	2	Y chromosome DNA typing, mitochondrial DNA typing and a special topic	
15	14 Dec (Fri)	2	Final Examination	

[#]Optional as the teaching material will be similar to lectures in the first four weeks.

*Students in the M.Sc. programme (BBMS5120 Biochemical Genetics and Forensic Sciences) will join the class together in the lecture.

Teachers:

Prof. Lau Kwok Fai SC 291 3943 1106 kflau@cuhk.edu.hk Prof. Henry Cheung

A Facility for Posting Course Announcements:

Course announcements and materials will be posted on the Blackboard course website. The powerpoint slides used will be posted on the Blackboard course website before the lecture. NO hard copies will be distributed in the class.

Reminders:

Academic Honesty: According to University regulations, students must submit an electronic version of their assignment to VeriGuide system for the purpose of checking for possible plagiarism. Read the University's policies on plagiarism carefully and do not plagiarise! CUHK has adopted a policy of zero tolerance for plagiarism. Instructors will send all suspected cases of plagiarism directly to the disciplinary committee for investigation. In the case of group report, plagiarism will affect all partners! Students submitting assignment done by third party is also a serious misconduct and regarded as fraud or academic dishonesty. The updated Procedures are available at the University's website "Honesty in Academic Work: A Guide for Students and Teachers" (http://www.cuhk.edu.hk/policy/academichonesty/). Students please note the aforementioned marking scheme, grade descriptors, academic honesty principle and the university penalty guideline are all applicable to this course. General university regulations are available on line: http://www.res.cuhk.edu.hk/en-gb/general-information/university-regulations

BCHE4090 Biochemistry for Sport and Exercise 2018-19, 2nd Term

Course code:	BCHE4090
Course title:	Biochemistry for Sport and Exercise
Venue:	Y.C. Liang Hall G04
Unit:	2
Period:	9:30 – 11:15, Friday
Instructor:	FH Lo
Office:	MMW507B
Email:	lofaihang@cuhk.edu.hk
Telephone:	39435019

Course Objectives:

This course aims at introducing various biochemical aspects of sport and physical activities to the students. The course is designed to cover some basic anatomy, energy utilization, cardiac functions, injury mechanisms, sports therapeutic principles, endocrine effects on physical activities, nutrition for sports, physical activities in extreme conditions, and physical activities for the diseased population. The course welcomes students with basic knowledge in biological science, where various in-class activities are integrated so as to let the students apply, analyze, and evaluate the academic knowledge in daily life. The training of students' creativity, question asking, critical thinking, goal-setting, self-learning, and decision making skills will also be emphasized: students are encouraged to participate in the self-reflective activities, workshop, and group activities. Throughout the learning process, it is anticipated that the students will not only acquire the academic knowledge, they will also consolidate their learning and acquire useful skills for both personal and professional aspects.

Learning Outcomes:

- Master the fundamental knowledge of physiology and anatomy of the skeletomuscular system;
- Comprehend the basic knowledge of the selected topics of sports biochemistry;
- Experience and apply the knowledge of sports biochemistry in every-day-life scenarios;
- Identify, analyze, and comment on the relationship between biochemistry and physical activities;
- Develop practical skills in goal-setting, problem-solving, team-work, and communication skills;
- Gain learning methodologies that promote life-long learning in biochemistry and other related disciplines.

Textbooks:

- ACSM's advanced exercise physiology (Farrell et al); [WE103 .A83 2012]
- ACSM's guidelines for exercise testing and prescription (Thompson et al); [WE103.A45 2010]
- Biological psychology (James W Kalat); [WL102 .K33 2013]
- Essential haematology (Hoffbrand & Moss); [available online]
- Exercise physiology : nutrition, energy, and human performance (McArdle et al); [QT260.M375 2010]
- Managing sports injuries (Christopher M Norris); [available online]
- Marks' basic medical biochemistry : a clinical approach (Lieberman et al); [available online]
- Medical biochemistry (Baynes & Dominiczak); [available online]
- Principles of anatomy & physiology (Tortora & Derrickson); [QS4.T67 2012]
- Principles of athletic training (Arnheim & Prentice); [QT260 .A76 1995]
- Robbins and Cotran pathologic basis of disease (Robbins et al); [available online]
- Sports and exercise nutrition (McArdle et al); [TX361.A8 M38 2013]
- Wilderness medicine (Paul S Auerbach); [available online]

Course Assessment	
	_

Classwork	20%
Mind-map*	10%
In-class activities**	10%
Written assignment	30%
Group written assignment+	25%
Individual written assignment#	5%
Quiz and exam	50%
Quiz	10%
Final exam (T/F, MCQ, and SQ)	40%
Total	100%

*The mind-map of each student is assessed by the whole class in terms of the creativity; **Any FIVE of the class activities I to VII account for 10% of the total marks of the course (2% each);

⁺Group written assignment requires each group to discuss and reflect on the group activity in either week 13 or 14. Each group, with at least three students, is required to present 1) what did you learn from the course (5%), 2) what was the most interesting academic knowledge to you (5%), 3) how did you integrate what you learnt in the course to analyze the situation presented to you during the group activity (5%), 4) what

judgment did you make in the situation (5%), and 5) what did you plan to do in the situation (5%) in the written assignment;

[#]Individual written assignment requires each student to reflect on what did they learn from all the class activities.

Grade	Overall Course
	Excellent achievement of all the stated learning outcomes;
	• Demonstration of excellent understanding of the core knowledge;
Α	• Excellent ability to apply the knowledge for problem solving;
	• Demonstration of excellent analytical skills for making judgement;
	• Excellent participation of in-class activities and group-project.
	Excellent achievement of all the stated learning outcomes;
	• Demonstration of excellent understanding of the core knowledge;
A-	 Very good ability to apply the knowledge for problem solving;
	 Demonstration of very good analytical skills for making judgement;
	• Excellent participation of in-class activities and group-project.
	 Very good achievement of all the stated learning outcomes;
	 Demonstration of very good understanding of the core knowledge;
В	 Good ability to apply the knowledge for problem solving;
	 Demonstration of good analytical skills for making judgement;
	 Very good participation of in-class activities and group-project.
	 Satisfactory achievement of all the stated learning outcomes;
	 Demonstration of good understanding of the core knowledge;
С	 Satisfactory ability to apply the knowledge for problem solving;
	 Demonstration of satisfactory analytical skills for making judgement;
	Good participation of in-class activities and group-project.
	 Fair achievement of all the stated learning outcomes;
	Demonstration of fair to satisfactory understanding of the core
	knowledge;
D	 Fair ability to apply the knowledge for problem solving;
	 Demonstration of fair analytical skills for making judgement;
	Fair to satisfactory participation of in-class activities and
	group-project.
	 Poor achievement of all the stated learning outcomes;
	 Demonstration of poor understanding of the core knowledge;
F	 Poor ability to apply the knowledge for problem solving;
	 Demonstration of poor analytical skills for making judgement;
	 Poor participation of in-class activities and group-project.

Grade Descriptors for BCHE4090

Week	Date	Contents
1	11 1	- Course introduction
1	11 Jan	- Skeletal system
0	10 Ion	- Muscular and nervous system
2	18 Jan	- Class activity I: body posture
		- Neuromuscular control
2		- Muscle contraction and synthesis
3	25 Jan	- Bone synthesis and soft tissue biochemistry
		- Class activity II: balancing the body
4		- Energy utilization at rest and during physical activities
4	1 Feb	- Class activity III: estimation of basal metabolic rate
	8 Feb	- Chinese New Year
		- Blood
_		- Cardiac functions for physical activities
5	15 Feb	- Cardiovascular system during physical activities
		- Class activities IV: blood pressure measurement
		- Quiz: skeletomuscular system
	22 Feb	- Molecular mechanism of cellular injury and recovery
6		- Ischemia, inflammation, and spasm
		- Fatigue and rest
	4.24	- Adaptation mechanisms to extreme environments
7	1 Mar	- Class activity V: mind-map drawing
		- Endocrine effect on physical activities
8	8 Mar	- Biochemical principles of training and doping
		- Class activity VI: how fit you are?
		- Nutrition for sports
9	15 Mar	- Fat cell biology
		- Class activity VII: measurement of body fat composition
10	22.14	- Physical activities in extreme conditions
10	22 Mar	- Class activity VIII: measurement of blood O ₂ saturation
		- Stress and pain
11	29 Mar	- Biochemical principles of sports therapeutics
		- Class activity IV: how stressed you are?
	5 Apr	- Easter
40	40.1	- Creative workshop
12	12 Apr	- Critique on mind-map

BCHE4090 Schedule

Creative self-reflection

Self-reflective activity will be conducted in the form of mind-map drawing; each student will assign a specific topic for him/herself during the preparation of the mind-map, according to the guidelines provided in Class Activity V. The students will briefly introduce the ideas of their maps to the class during the Critique on mind-map. The assessment criterion of the mind-map will be based on the creativity of the mind-map, which will be assessed collectively by the whole class during the critique.

Group activity for learning integration

Group activity will be held at the end of the course; where students will be divided into groups (depending on the final class size, the group activity will be conducted on the mark-up class day, 22 or 23 April, Tuesday or Wednesday) and create scientific stories with the application of the knowledge acquired from the course; thus, the group activity require students to revise the materials covered by the course and to do extra self-study about (wilderness) emergency rescue. During each 1 to 2 hour(s) group activity, students will play the stores they create: some students act as the patients; while the other will act as the rescuers. The rescuer group will have to apply their skills to comprehend and analyze the situation, to apply their knowledge and creativity, and to make judgment to act as a team. The rescuer group will be allowed to debrief among themselves after the activity. The students will rotate their roles once the activity has been completed. The activity will take place within the classroom and each student will have to make use of their imagination.

Academic Honesty

Attention is drawn to University policy and regulations on honesty in academic work, and to the disciplinary guidelines and procedures applicable to breaches of such policy and regulations. Details may be found at http://www.cuhk.edu.hk/policy/academichonesty/. For ALL written assignment, students will have to submit a statement that they are aware of these policies, regulations, guidelines and procedures.

BCHE4130 Molecular Endocrinology 2017-18 Second Term (Not Offered in 2018-19) Time: T3-4 (10:30 am to 12:15 pm) and H6 (1:30 pm to 2:15 pm) Venue: SC L4

This course describes the chemical structures and biological functions of hormones in vertebrates with emphasis but not focus only on human subjects. The organization and operation of different hypothalamus- pituitary- peripheral endocrine gland axes will be discussed. The molecular aspects of endocrine action through hormone secretion and interactions with their specific receptors and downstream signaling pathways in target cells to elicit specific functions will be explored. Current advances in molecular endocrinology techniques will also be discussed.

Textbooks:

Hadley, ME & Levine, JE (2007). **Endocrinology**, 6th Ed. Upper Saddle River, N.J., 500 p. (WK100. H17 2007; UL reserved)

Molina, PE (2013). Endocrine Physiology, 4th Ed., McGraw Hill (<u>http://accessmedicine.mhmedical.com/book.aspx?bookid=507</u>)

Nussey, SS & Whitehead, SA (2001). Endocrinology, An Integrated Approach, BIOS, 359p.

http://www.ncbi.nlm.nih.gov/books/NBK22/ (NCBI Textbook On-line)

Week	Date	Topic (Text Chapters in Hadley and Levine, 2007)	Teachers
1	Jan 9 (2 h)	1. Mechanisms of Hormone Action (1, 2, 3)	KM Chan
	Jan 11 (1 h)		(Coordinator)
2	Jan 16 (2 h)	2. Endocrine Methodologies and Signal Transductions (4)	
	Jan 18 (1 h)		SC184
3	Jan 23 (2 h)	3. Hypothalamic and Pituitary Hormones (5, 6, 12)	
	Jan 25 (1 h)		Tel: 3943-4420
4	Jan 30 (2 h)	4. Posterior Pituitary Hormones & POMC (7, 8)	
	Feb 1 (1 h)		Email:
5	Feb 6 (2 h)	5. Pancreatic Hormones and Metabolic Regulation (11)	kingchan@cuhk.edu.hk
	Feb 8 (1 h)		
6	Feb 13 (2 h)	6. Hypothalamic-Pituitary-IGF Axis and Growth Control (12)	
	Feb 22 (1 h)		
7	Feb 27 (2 h)	7. Hypothalamic-Pituitary-Thyroid Axis (13, 14)	
	Mar 1 (1 h)		
8	Mar 6 (2 h)	8. Hypothalamic-Pituitary-Gonads Axis (17-19)	
	Mar 8 (1 h)		
9	Mar 13 (2 h)	9. Presentation on hormone techniques ^{\$}	
	Mar 15 (1 h)		
10	Mar 20 (2 h)	10. Reproduction, Sex Hormones and Contraceptives	FH Lo
	Mar 22 (1 h)		
11	Mar 27 (2 h)	11. Steroid hormones and their actions (15-16)	MMW507B
12	Apr 10 (2 h)	12. Gastrointestinal (GI) Hormones (10)	 Tel: 3943-4359
_	Apr 12 (1 h)		
13	Apr 17 (2 h)	13. Calcium Homeostasis and Bone Metabolism (9)	Email:
. •	Apr 19 (1 h)		lofaihang@cuhk.edu.hk

Outline and Teaching Schedule:

Feb 15-21, Lunar New Year holidays; March 29- April 3, reading week

Evaluations:

- 1. **Presentation (group) on Hormone Techniques** (15%): 5% peer-assessment; 10% based on oral presentation and slides submitted as group project. *Please include one multiple-choice question in your presentation*.
- ^Assignment (25% covering week 3-8): students should answer any 2 questions posted on lecture notes, students are required to write research proposal or design experiments to test hypothesis or discuss case study. All students are encouraged to apply critical thinking, creativity, and problem-solving skills to solve a research problem. Warning: no two assignments could have similar contents and that would be regarded as plagiarism (DEADLINE: APRIL 8, 2018).
- 3. **#Poster (group) Presentation** (20%): covering all endocrinology research topics (DEADLINE: May 2, 2018).
- 4. *FINAL EXAMINATION (40%): covering all topics taught from Week 1 to 13, date to be confirmed in centralized exam period.

***Oral Presentation on Hormone Techniques:** students in a group of 3-4 students should select and present in 10 minutes a special and advanced technique to detect hormones or study the effects of hormones in animals. Power point slides (<12) should be submitted one day ahead of presentation. Please include one multiple-choice question in your presentation.

^Assignments: each student should submit a written assignment describing their original approach to solve a research problem. In the assignment, 1) a research problem relevant to the course should be clearly identified; 2) the hypothesis should be clearly defined; 3) the method followed by the hypothesis should be described; 4) how the data should be analyzed in order to get conclusion should be mentioned; 5) the reference of scientific information should be cited; 6) student full name and student ID should be included. (Page limits: 10; max word counts: 6,000)

***Poster presentation:** students in a group of 2-3 students would select a research paper within last 5 years (**2013-18**) and write an overview (commentary) on the major findings of the paper(s), rationales and merit of the study, and discuss the perspective or future experiments that can be performed to extend the study and the understanding of the subject matter. All posters should be finished within one page (maximum word count is 2000, with 3- 4 figures or tables) in a pdf file to be uploaded to blackboard with the signed VeriGuide statement (on page 2). Contents of the poster include [1] the title of the poster, [2] student names (id), [3] full name(s) of the article(s) reviewed (with links and downloaded dates), [4] abstracts, [5] keywords, [6] major findings with 2-3 figures or tables, [5] critiques, [6] discussions (e.g. accuracy of techniques involved), [7] conclusions, [8] perspectives, and [9] references.

*Final Examination: this is an open note examination and students may take only one A4 paper with their own notes to finish this exam consists of mainly multiple choice or short-answer questions on concepts of endocrinology.

Expected learning outcomes

After completing the course, students should be able to:

- 1. Understand the homeostatic controls in our body using the endocrine system;
- 2. Understand how polypeptide hormones and lipid soluble hormones act on their target cells to activate various intracellular signaling pathways;
- 3. Understand the concepts of hormonal control via feedback mechanisms;
- 4. Understand the etiology and diagnosis of diseases from hormone defects, such as gigantism and Cushing Syndrome.

By the end of the course, students will be able to appreciate and find information about the complexes of hormonal control of growth, metabolism, reproduction and development.

Grade	Marks	Contents and Examinations	Data Presentation and Term Paper Writing
A	>85	Able to address and discuss the topics in endocrinology up to a high standard with a potential to do hormone research. Could provide correct answers to 80% of the questions in final exam.	Able to write nice term assays on selected topics up to a publication standard with quality data presentation and discussion. Able to present a poster on a research topic related to hormone research with detailed information and discussions on the topic chosen to its perfection with enough citations of recent papers.
A-	80- 85	Able to address the topics in endocrinology up to a high standard, and answer at least 70% of the questions in the final examination.	Able to write a nice review paper on selected topics and present a group poster on a research topic in a good standard with clarity and enough citations of recent papers.
B+	75-79	Able to address the topics in endocrinology up to a good standard with all terms and their relationships identified; and manage to answer more than half of the questions correctly.	Up to a good standard with enough data, but lack of statistical analysis; poster presentation with identified goals
В	70-75	Able to address some topics in the research up to a good standard, and manage to answer more than half of the questions correctly.	Up to a good standard, but failed to provide sufficient and up to dated citations in both term assays.
В-	65-69	Able to identify and address the topic in Endocrinology up to a good standard, and manage to answer more than half of the questions correctly.	Limited data provided, weak in data interpretations or little interpretation at all; posters and term assays received in good order and shapes.
C+	60-64	Weak to address the topic in endocrinology with less than half of the final examination questions done correctly.	Invalid and very limited data presented in poster and term assays.
С	55-59	Weak to address the topic in endocrinology with less than half of the final examination questions done correctly.	Invalid and very limited data presented in poster and term assays.
C-/D	50-54	Very weak to address the topic in endocrinology with less than half of the final examination questions done correctly.	Invalid and very limited data presented in poster and term assays.
F	< 50	Unable to address the topic in endocrinology with less than 30% of the final examination questions done correctly.	Failed to submit any term assay nor poster. Assignments found with plagiarized materials.

Grade Descriptors for BCHE 4130 Molecular Endocrinology

The range of marks is an approximation suggested for reference only. The actual grade shall reflect the overall performance in the course which comprises the descriptors for all sessions and the final examination.

BCHE4640 Aspects of Neuroscience Laboratory (2018-19 Term 1)

Course code:	BCHE4640
Course title:	Aspects of neuroscience laboratory
Venue:	Lab check-in, lab examination, and oral presentation: LSK 515
	Course introduction: UCA 105
	Practical sessions: Science Centre Room 190 and 152
	Advanced practical three: Pi ' Chiu Bldg Rm 102 Training Room 1
	Library workshop: User Education Room 2, University Library
Unit:	2
Term	1
Period:	2:30 – 6:15 pm, Tuesday
Maximum class size:	20

Course Objectives:

This course aims at introducing various aspects of neuroscience, in particular the research skills and laboratory techniques, to the students. The course is designed to focus on the basic principles and technical skills of cell biology and cellular pathology; where students will participate in two basic and three advanced practical sessions specialized in the themes of tissue culture reagent preparation, basic tissue culture techniques, two fundamental laboratory techniques for neurological diagnostics, and data analytics. The training of students ' self-learning, problem-solving, and communication skills will also be emphasized: students are encouraged to give presentations with topics in neuroscience they are interested in; they will be fully supported and provided with the optimal learning environment to reflect on the topics they select. Furthermore, a tailored library training workshop will be integrated in the course. Throughout the learning process, it is anticipated that the students will not only acquire the academic knowledge and practical skills in neuroscience, they will also consolidate their learning and acquire other skills of self-learning, problem-solving, and communication.

Learning Outcomes:

- Comprehend the basic knowledge and laboratory skills in cell biology and neurological diagnosis;
- Recognize how various aspects of neuroscience are important that benefit our daily life;
- Recognize, analyze, and comment on the scientific and ethical issues of certain topics of neuroscience;
- Develop practical skills in problem-solving and communication through different types of learning activities;
- Gain learning methodologies that promote life-long learning in neuroscience and other life science-related discipline.

Textbook:

 Laboratory Diagnosis in Neurology (Brigitte Wildemann et al) [available online];

References:

- Clinical chemistry: concepts and applications (Shauna C. Anderson & Susan Cockayne) QY90.C6423 (2003);
- Introduction to cell and tissue culture: theory and technique (Jennie Mather) QS525.M38 (1998);
- Tietz textbook of clinical chemistry and molecular diagnostics (Carl A. Burtis et al) QY90.T49 (2012);
- SPSS statistics for dummies [electronic resource] (Keith McCormick et al) (2015);
- Using statistics in the social and health sciences with SPSS and Excel [electronic resource] (Martin L. Abbott) QA276.45.M53 A23 (2017)

Staff Correspondence

Name	Office	Telephone number	Email address
Course coordinator			
LO, Fai Hang	MMW507B	3943-5019	lofaihang@cuhk.edu.hk
WONG, Kelvin	MMW527	3943-4302	kelvinwong@cuhk.edu.hk
Demonstrator			
AN Ying	MMW 509A	3943-8032	yingann01@gmail.com
Emma LU	SC 294	3943-6119	emmaluxixi@hotmail.com
Susan CHENG	SC 298	3943-8132	chengsaushan@yahoo.com
ZHAI Yuqi	SC 294	3943-6119	354722951@qq.com

Course Assessment

Participation and performance	10%
Written assignment	25%
Presentation	25%
Preparation	5%
Coordinator	10%
Demonstrators	5%
Peers	5%
Lab Exam	40%
Total	100%

Schedu	le				
Week	Date		Experiment	Venue	Staff
1	4 Sept	-	Lab Check-In/student consultation Grouping/presentation topic selection	LSK 515	LFH
2	11 Sept	-	Study week		
3	18 Sept	-	Course induction	UCA 105	LFH
4	25 Sept	-	Public Holiday – The day following the Chinese Mid-Autumn Festival		
5	2 Oct	-	Basic Practical One: Reagent preparation	SC 190 & 152	Kelvin, An Ying & others
6	9 Oct	-	Basic Practical Two: freezing and thawing neural cell line/cell counting/splitting cell (Session A)	SC 190 &	Kelvin, Emma &
7	16 Oct	-	Basic Practical Two: freezing and thawing neural cell line/cell counting/splitting cell (Session B)	152	others TBA
8	23 Oct	-	Advanced Practical One: cerebrospinal fluid and cytospin	SC 190	Kelvin, Yuqi & others
9	30 Oct	-	Library workshop	User Education Room 2, UL	University Library expert
10	6 Nov	-	Advanced Practical Two: cerebrospinal fluid and real time-PCR	SC 190	Kelvin, Susan & others
11	13 Nov	-	Advanced Practical Three: SPSS Techniques and Applications	Pi'Chiu Bldg Rm 107 Training Room 3	LFH & Kelvin
12	20 Nov	-	Oral presentation	LSK 515	All
13	27 Nov	-	Lab examination	LSK 515	All

Discussion

Week	Date	Time	Venue
5	2 Oct	4:30 pm	SC 297
6	9 Oct	4:30 pm	SC 297
7	16 Oct	4:30 pm	SC 297
8	23 Oct	4:30 pm	SC 190
10	6 Nov	4:30 pm	SC 297

Presentation topics

- Autoimmune disease of the nervous system
- Biochemical basis of drug abuse
- Biochemical basis of psychiatric disorders
- Biochemical mechanism(s) of balance and hearing
- Biochemical mechanism(s) of vision
- Biochemistry of happiness
- Biochemistry of spicy hot food
- Biomarkers for neurological diseases
- Biology of personality
- Blood brain barrier and the flow/pressure of cerebrospinal fluid
- Botox cosmetics
- Brain tumours
- Cerebral ischemia: hypoxic versus haemorrhagic
- Cerebrospinal fluid versus serum
- Discovery of anaesthesia
- Epilepsy and genetics
- Genetics of hearing
- Infectious diseases of the nervous system
- Meningitis and encephalitis
- Metabolic diseases of the nervous system
- Neurological venom of snakes
- Neurotransmitter diseases
- Nitrous oxide (笑氣)
- Rabies
- Sarin (沙林毒氣) as a biological weapon
- Theory of pain
- Or, any other proposed topics

Overall course Grade Α Outstanding achievement of all the stated learning outcomes; • Demonstration of excellent conceptual, procedural, and application knowledge; Demonstration of excellent practical skills in terms of data accuracy; Demonstration of excellent generic skills, such as making scientific judgement, • conducting self learning, analytical and communication skills; Demonstration of excellent teamwork, leadership, and professionalism; Excellent understanding of the social impact of immunology; . A-Outstanding achievement of all the stated learning outcomes; • Demonstration of excellent conceptual, procedural, and application knowledge; . Demonstration of very good practical skills in terms of data accuracy; Demonstration of excellent generic skills, such as making scientific judgement, conducting self learning, analytical and communication skills; Demonstration of excellent teamwork, leadership, and professionalism; Excellent understanding of the social impact of immunology; • В Substantial achievement of all the stated learning outcomes; ٠ Demonstration of very good conceptual, procedural, and application knowledge; Demonstration of satisfactory to very good practical skills in terms of data accuracy; Demonstration of good to very good generic skills, such as making scientific judgement, conducting self learning, analytical and communication skills; Demonstration of good to very good teamwork, leadership, and professionalism; Good to very good understanding of the social impact of immunology; • С Satisfactory achievement of all the stated learning outcomes; • Demonstration of satisfactory conceptual, procedural, and application knowledge; Demonstration of fair to satisfactory practical skills in terms of data accuracy; Demonstration of satisfactory generic skills, such as making scientific judgement, conducting self learning, analytical and communication skills; Demonstration of satisfactory teamwork, leadership, and professionalism; • Satisfactory understanding of the social impact of immunology; D • Minimal achievement of all the stated learning outcomes; Demonstration of fair conceptual, procedural, and application knowledge; Demonstration of minimum practical skills in terms of data accuracy; Demonstration of fair generic skills, such as making scientific judgement, conducting self learning, analytical and communication skills; Demonstration of fair teamwork, leadership, and professionalism; Fair understanding of the social impact of immunology;

BCHE4640 Grade descriptors

F	 Poor achievement of all the stated learning outcomes;
	 Demonstration of poor conceptual, procedural, and application knowledge;
	 Demonstration of poor practical skills in terms of data accuracy;
	• Demonstration of poor generic skills, such as making scientific judgement, conducting
	self learning, analytical and communication skills;
	• Demonstration of poor teamwork, leadership, and professionalism;
	 Poor understanding of the social impact of immunology;

BCHE4760 Immunology and Haematology Laboratory (2018-19 Term 1)

Course code:	BCHE4760
Course title:	Immunology and Haematology laboratory
Venue:	Course introduction and lab examination: NAH 11
	Oral presentation: UCC 111
	Practical sessions: Science Centre Room 188, 190
Unit:	2
Term	1
Period:	2:30 – 6:15 pm, Thursday

Course descriptions:

This course focuses on the practical work in the field of immunology and haeamtology; where students will participate in five practical sessions specialized in specific themes of immunology and haeamtology, such as innate immunity, humoral immunity, haematological specimens, red blood cells (RBCs), white blood cells (WBCs), and immunological assays. The practice of 'flipped classroom' allows students to do self-study of the e-learning courseware to get adequately prepared for each class. In other words, the laboratory is a place for the students to practise, to experience, to solve problems, and to discuss with autonomy. During each practical session, discussion time will be available to facilitate in-depth learning. Towards the end of the course, students will be giving presentations related to topics they are interested in for learning consolidation. In the course, impact of the academic knowledge on the society as well as other important generic skills, such as team building, self-learning, problem-solving, teamwork, and scientific communication skills, are emphasized. Throughout the various learning processes, it is anticipated that the students will not only acquire the academic knowledge and laboratory skills in immunology and haematology, they will also consolidate their learning and acquire other generic skills for future career development as well as applications in the society.

Learning goals:

- Comprehend the core knowledge and relevant laboratory skills in immunology and haematology;
- Develop generic skills in scientific communication and working in a team through diverse types of learning activities;
- Appreciate the applications and societal impact of the academic knowledge acquired from the course;
- Gain learning methodologies that promote life-long learning in immunology, haeamtology, and other life science-related discipline.

Textbooks:

• Refer to lecture course (BCHE4060 Basic and Applied Immunology and BCHE4030 Clinical Biochemistry)

Supplementary References:

- Practical Immunology (Hay & Westwood) [available online];
- Laboratory Hematology Practice (Kottke-Marchant & Davis) [available online];
- Laboratory Diagnosis of Infectious Diseases: Essentials of Diagnostic Microbiology (Engelkirk & Duben-Engelkirk)
 QW25.E54 (2008);
- Diagnostic Techniques in Hematological Malignancies (Erber WN, ed) WH525 .D53 (2010);

Staff Correspondence

Name	Office	Telephone number	Email address	
Course lecturers				
KONG Siu Kai	MMW 609	3943-6799	skkong@cuhk.edu.hk	
PANG Iris	SC 138	3943-1393	irispang@cuhk.edu.hk	
Course coordinators				
KONG Ada	MMW 525	3943-6255	adakong@cuhk.edu.hk	
LO Fai Hang	MMW 507B	3943-4359	lofaihang@cuhk.edu.hk	
Demonstrators				
Dora LIU	MMW 610	3943-8034	doraliusy@gmail.com	
YANG Lei	SC 151	3943-8073	yangleinankai@gmail.com	
Shane TSAO	SC 151	3943-8073	shanetsao@gmail.com	
Ryan YIP	RRSSB118	3943-1349	yph1993@yahoo.com.hk	
Kristen YUNG	RRSSB118	3943-1349	wing0070006@hotmail.com	
Winnie ZHANG	MMW 611	3943-6363	zh_wenxiu@126.com	

Course Assessment

¹ Performance & participation	10%
² Pre-lab quiz	10%
³ Written assignment	10%
Data	20%
⁴ Raw data	10%
⁵ Presentable data	10%
Presentation	25%
Preparation	4%
Coordinators	10%
Demonstrators	5%
⁶ Peers	6%
Lab Exam	25%
⁷ Total	100%

¹Each student has to sign in (at 2:30 pm) and sign out (before 5:15 pm) for all the 5 practical sessions;

²There is a pre-lab quiz before each practical session to ensure students to have adequate preparation in advance. Each pre-lab quiz carries 2% of the total mark of the course; ³There is a set of critical thinking questions for each practical session. Students are required to complete the questions <u>before</u> each practical session and have discussion with the coordinator during class. After finishing the practical, the group will have to submit their answers together with the presentable data onto *Blackboard* by the due date;

⁴Each group has to write down all of the raw data after each practical session for assessment in terms of the quality/accuracy of the data obtained. The raw data of each practical session accounts for 2% of the total mark of the course;

⁵Each group has to present their raw data and submit the answers of the critical thinking questions onto *Blackboard*. Each group has to work out the most appropriate way to present their raw data. The presentable data of each practical session accounts for 2% of the total mark of the course. The assessment is based on how the raw data is being presented; ⁶Five marks will be allocated for the quality of the presentations and a maximum of 1 mark will be awarded to good teams nominated by peers.

⁷For students who take part in the optional multi-dimensional development modules to receive the bonus points and result in total marks >100, the highest mark of the class will be the full mark. The marks of the whole class will then be converted to the 100-point scale based on the highest mark.

Sched	Schedule				
Week	Date		Experiment	Venue	Staff
		-	Lab Check-In/student consultation		
1	6 Sept	-	Grouping/presentation topic	NAH 11	LFH
			selection		
2	13 Sept	-	Preparation of oral presentation		
3	20 Sant	-	Assay for Innate Immunity	SC	Ada and
5	20 Sept	-	Assay for Humoral Immunity (I)		
4	27 Sept	-	Assay for Humoral Immunity (II)	188/190	demonstrators
5	4 Oct	-	Preparation of oral presentation		
6	11 Oct	-	Assays of Haematological Specimens	SC	Ada and
7	18 Oct	-	Assays of Red Blood Cells (RBCs)	188/190	demonstrators
8	25 Oct	-	Preparation of oral presentation		
9	1 Nov	-	Flow Cytometric Analysis and	SC	Ada and
9	TINOV		Immunological Assay	188/190	demonstrators
10	8 Nov	-	Preparation of oral presentation		
11	15 Nov	-	University Ceremony		
12	22 Nov	-	Lab examination	NAH 11	All
13	29 Nov	-	Group Presentation & Sharing	UCC 111	All

BCHE4760 Grade Descriptors

A-	 Outstanding achievement of all the stated learning outcomes;
	• Demonstration of excellent conceptual, procedural, and application knowledge;
	 Demonstration of very good practical skills in terms of data accuracy;
	• Demonstration of excellent generic skills, such as making scientific judgement,
	conducting self-learning, analytical and communication skills;
	 Demonstration of excellent teamwork, leadership, and professionalism;
	 Excellent understanding of the social impact of immunology;
В	 Substantial achievement of all the stated learning outcomes;
	 Demonstration of very good conceptual, procedural, and application knowledge;
	• Demonstration of satisfactory to very good practical skills in terms of data accuracy;
	Demonstration of good to very good generic skills, such as making scientific
	judgement, conducting self-learning, analytical and communication skills;
	• Demonstration of good to very good teamwork, leadership, and professionalism;
	 Good to very good understanding of the social impact of immunology;
С	Satisfactory achievement of all the stated learning outcomes;
	• Demonstration of satisfactory conceptual, procedural, and application knowledge;
	• Demonstration of fair to satisfactory practical skills in terms of data accuracy;
	• Demonstration of satisfactory generic skills, such as making scientific judgement,
	conducting self-learning, analytical and communication skills;
	Demonstration of satisfactory teamwork, leadership, and professionalism;
	 Satisfactory understanding of the social impact of immunology;
D	Minimal achievement of all the stated learning outcomes;
	 Demonstration of fair conceptual, procedural, and application knowledge;
	 Demonstration of minimum practical skills in terms of data accuracy;
	• Demonstration of fair generic skills, such as making scientific judgement, conducting
	self-learning, analytical and communication skills;
	 Demonstration of fair teamwork, leadership, and professionalism;
	• Fair understanding of the social impact of immunology;
F	Poor achievement of all the stated learning outcomes;
	 Demonstration of poor conceptual, procedural, and application knowledge;
	 Demonstration of poor practical skills in terms of data accuracy;
	 Demonstration of poor generic skills, such as making scientific judgement,
	conducting self-learning, analytical and communication skills;
	 Demonstration of poor teamwork, leadership, and professionalism;
	 Poor understanding of the social impact of immunology;

BCHE4830 Medical Biochemistry Laboratory (2018-19 Term 2)

Course code:	BCHE4830
Course title:	Medical biochemistry laboratory
Venue:	Classrooms: Mong Man Wai Building Room 705
	Cheng Yu Tung Buidling Room 209B
	Laboratory: Science Centre East Block Room 408-411
Unit:	2
Term:	2
Period:	2:30 – 6:15 pm, Monday

Course Objectives:

In this course, students will be introduced to a series of practical sessions specialized in representative themes, such as the analysis of diabetes mellitus, liver function, endocrine function, tumour marker, which supplements the knowledge acquired from BCHE4030 Clinical Biochemistry/BCHE4130 Molecular Endocrinology and provides an experiential learning opportunities of the practical skills. In addition to the academic knowledge and laboratory techniques, other learning activities are also integrated into the course to equip our students for the professional and daily life scenarios they may encounter in the future; the holistic training of students' self-learning, problem-solving, team work, and communication skills will be emphasized: all students are required to work on self-reflection about the impact of medical biochemistry on our society. The students will participate class activity together to apply their knowledge in real life situations. They will also be encouraged to form groups and explore specific topics interesting to them, as well as to visit sites out of the campus. Throughout the diversified learning experiences in the course, it is anticipated that the students will not only acquire the academic knowledge and laboratory techniques in medical biochemistry, but also develop useful generic skills, apply their learning in real life scenarios, and equip themselves for their further studies and career development.

Learning Outcomes:

- Comprehend and apply the basic knowledge and laboratory skills in medical biochemistry;
- Recognize, analyze, and comment on the importance, as well as the scientific and social issues of medical biochemistry in clinical practice;
- Develop practical skills in goal-setting, self-learning, critical thinking, problem-solving, team-work, and communication skills through the various types of learning activities offered by the course;
- Gain learning methodologies that promote life-long learning in medical biochemistry and other life science-related discipline.

Textbook:

- Clinical Chemistry (Marshall & angert) (available online)
- Medical Biochemistry (Baynes & Dominiczak) (available online)
- Henry's Clinical Diagnosis and Management by Laboratory Methods (McPherson & Pincus) (available online)

References:

• Tietz textbook of clinical chemistry and molecular diagnostics (Carl A. Burtis et al) (available online);

Schedule

	Schedule								
Week	Date		Activity/Experiment	Venue	Staff				
1	7 Jan	-	Lab Check-In/Grouping		LFH				
	7 1911	-	Course introduction	MMW705	LFN				
2	14 Jan	-	Sway report						
3	21 Jan	-	Sway report						
4	20 Jan			SC	Anita and				
4	28 Jan	-	Part One (a & b)	E408-411	Demonstrators				
	4 Feb	-	Chinese New Year						
5	11 Feb	-	Sway report						
					SC	Anita and			
6	18 Feb	- eb	Part Two (a & b)	E408-411	Demonstrators				
7	25 Feb	-	Sway report						
	0 4 1 4	. r		Dart Tura (h 9 a)	SC	Anita and			
8	4 Mar	-	Part Two (b & c)	E408-411	Demonstrators				
9	11 Mar	-	ICAC Talk	MMW 705	ICAC				
9		-	VR trial workshop		representatives				
10	10 Ман	10 Mar	0 19 Mar	18 Mar -	0 19 Mar	19 Mar Dart Throa (a 8 h)	Dart Three (a 8 h)	SC	All students
10		-	Part Three (a & b)	E408-411	All students				
11	- Sw 1 25 Mar	Sway report peer assessment	MMW 705	ALL					
	23 IVIdI	-	Tutorial of lab exam						
	1 Apr	-	Easter						
12	8 Apr	-	Part 4	SC	Anita and				
12	9 Apr	-	Part 4 follow-up	E408-411	Demonstrators				
13	15 Apr	-	Lab exam	CYT 209B	ALL				

Staff Correspondence

Name	Office	Telephone number	Email address
Course lecturers			
Prof CHAN, King Ming	SC 184	3943-4420	kingchan@cuhk.edu.hk
Prof KONG, Siu Kai	MMW 609	3943-6799	skkong@cuhk.edu.hk
Course coordinators			
LO, Fai Hang	MMW 507B	3943-5019	lofaihang@cuhk.edu.hk
YIU, Anita	SC E412A	3943-6881	anita-garcia@cuhk.edu.hk

Course Assessment

¹ Performance & participation	10%
² Pre-lab quiz	20%
Data	20%
³ Raw data	10%
⁴ Presentable data	10%
Written assignment	30%
⁵ Write-up form	20%
Sway report	10%
Lab exam	20%
Total	100%

¹Each student has to sign in (at 2:30 pm) and sign out (before 5:15 pm) for all the 5 practical sessions;

²There is a pre-lab quiz before each practical session to ensure students to have adequate preparation in advance;

³Each group has to write down all of the raw data after each practical session for assessment in terms of the quality/accuracy of the data obtained. The raw data of each practical session accounts for 2% of the total mark of the course;

⁴Each group has to present their raw data and submit the answers of the critical thinking questions onto *Blackboard*. Each group has to work out the most appropriate way to present their raw data. The presentable data of each practical session accounts for 2% of the total mark of the course. The assessment is based on how the raw data is being presented; ⁵There is a set of critical thinking questions for each practical session. Students are required to complete the questions <u>before</u> each practical session and have discussion with the coordinator during class. After finishing the practical, the group will have to submit their answers together with the presentable data onto *Blackboard*;

BCHE4830 Grade descriptors

Grade		Overall course
	•	Outstanding achievement of all the stated learning outcomes;
	•	Demonstration of excellent conceptual, procedural, and application knowledge;
	•	Demonstration of excellent practical skills in terms of data accuracy;
А	•	Demonstration of excellent generic skills, such as making scientific judgement,
		conducting self learning, analytical and communication skills;
	•	Demonstration of excellent teamwork, leadership, and professionalism;
	•	Excellent understanding of the social impact of medical biochemistry.
	•	Outstanding achievement of all the stated learning outcomes;
	•	Demonstration of excellent conceptual, procedural, and application knowledge;
	•	Demonstration of very good practical skills in terms of data accuracy;
Α-	•	Demonstration of excellent generic skills, such as making scientific judgement,
		conducting self learning, analytical and communication skills;
	•	Demonstration of excellent teamwork, leadership, and professionalism;
	•	Excellent understanding of the social impact of medical biochemistry.
	•	Substantial achievement of all the stated learning outcomes;
	•	Demonstration of very good conceptual, procedural, and application knowledge;
	•	Demonstration of satisfactory to very good practical skills in terms of data accuracy;
В	•	Demonstration of good to very good generic skills, such as making scientific
		judgement, conducting self learning, analytical and communication skills;
	•	Demonstration of good to very good teamwork, leadership, and professionalism;
	•	Good to very good understanding of the social impact of medical biochemistry.
	•	Satisfactory achievement of all the stated learning outcomes;
	•	Demonstration of satisfactory conceptual, procedural, and application knowledge;
	•	Demonstration of fair to satisfactory practical skills in terms of data accuracy;
С	•	Demonstration of satisfactory generic skills, such as making scientific judgement,
		conducting self learning, analytical and communication skills;
	•	Demonstration of satisfactory teamwork, leadership, and professionalism;
	•	Satisfactory understanding of the social impact of medical biochemistry.
	•	Minimal achievement of all the stated learning outcomes;
	•	Demonstration of fair conceptual, procedural, and application knowledge;
	•	Demonstration of minimum practical skills in terms of data accuracy;
D	•	Demonstration of fair generic skills, such as making scientific judgement, conducting
		self learning, analytical and communication skills;
	•	Demonstration of fair teamwork, leadership, and professionalism;
	•	Fair understanding of the social impact of medical biochemistry.
F	•	Poor achievement of all the stated learning outcomes;

•	Demonstration of poor conceptual, procedural, and application knowledge;
•	Demonstration of poor practical skills in terms of data accuracy;
•	Demonstration of poor generic skills, such as making scientific judgement, conducting
	self learning, analytical and communication skills;
•	Demonstration of poor teamwork, leadership, and professionalism;
•	Poor understanding of the social impact of medical biochemistry.

BCHE4901 Senior Experimental Project I (2018-19)

Course Description

In this course, students carry out an independent laboratory research project either provided by the supervisor or jointly decided with the student. To fulfill the course requirement, students are required to discuss their progress with their supervisors regularly and submit a research proposal.

Learning Outcome

Students taken this course are expected to develop the following abilities:

- 1. Integrate the knowledge and skills learnt previously in other courses
- 2. Survey scientific literature relevant to their research project
- 3. Read scientific literature critically to identify the scientific questions or problems
- 4. Design independent research project to address the scientific questions
- 5. Acquire hands-on research techniques in conducting experiments
- 6. Develop problem-solving abilities
- 7. Improve skills in writing scientific proposal
- 8. Develop a sense of responsibility and term spirit

Course Syllabus

The students should take the initiative to discuss with their supervisors and compromise a topic for the independent research project. The students should first survey the background of their research project and identify the scientific questions they want to address. The students then design and perform the experiments for this project under the guidance of the supervisors and submit a research proposal in the term end.

Assessment Scheme

Essays 40% Other 60%

Required and Recommended Readings

Relevant reference materials will be provided by the supervisor.

Enrollment Requirements

Prerequisite: BCHE3090 (or BCHE3092)

BCHE4901 Grade Descriptors

Grade	Overall Course
	Outstanding achievement of all the stated learning outcomes;
A	 Demonstration of excellent research skills;
A	 Demonstration of excellent research attitude;
	 Demonstration of excellent research plan and/or outcome;
	 Outstanding achievement of most of the stated learning outcomes;
A-	 Demonstration of very good research skills;
A-	 Demonstration of excellent research attitude;
	 Demonstration of very good research plan and/or outcome;
	 Substantial achievement of the stated learning outcomes;
В	 Demonstration of good research skills;
Б	 Demonstration of good research attitude;
	 Demonstration of good research plan and/or outcome;
	• Fair to satisfactory achievement of the stated learning outcomes;
С	 Demonstration of satisfactory research skills;
L	 Demonstration of satisfactory research attitude;
	 Demonstration of satisfactory research plan and/or outcome;
	• Fair achievement of the essential parts of the stated learning
	outcomes;
D	Demonstration of fair research skills;
	 Demonstration of fair research attitude;
	 Demonstration of satisfactory research plan and/or outcome;
	 Poor achievement of the stated learning outcomes;
F	 Demonstration of poor research skills;
Г	Demonstration of poor research attitude;
	 Demonstration of poor research plan and/or outcome;

BCHE4902 Senior Experimental Project II (2018-19)

Course Description

Students are required to discuss their progress with their supervisor(s) regularly and submit a progress report at the end of the term. For student who will not be enrolled in BCHE4903, a final report in the form of a manuscript and an oral presentation are assessed at the end of term for performance.

Learning Outcome

Students taken this course are expected to develop the following abilities:

- 1. Integrate the knowledge and skills learnt previously in other courses
- 2. Survey scientific literature relevant to their research project

3. Read scientific literature critically to identify the scientific questions or problems

- 4. Design independent research project to address the scientific questions
- 5. Acquire hands-on research techniques in conducting experiments
- 6. Develop problem-solving abilities
- 7. Develop data analysis and interpretation skills in logical and scientific ways
- 8. Improve skills in scientific writing and oral presentation
- 9. Develop a sense of responsibility and term spirit

Course Syllabus

The students should continue to work on the research project from BCHE4901. Students should discuss the progress with their supervisors and submit a progress report in the term end. If the students will not continue to work on the research project in BCHE4903, they should submit a final report in the form of manuscript and present orally in the term end.

Assessment Scheme

Essays 40% Other 60%

Required and Recommended Readings

Relevant reference materials will be provided by the supervisor.

Enrollment Requirements

Pre-requisite: BCHE3090 (or BCHE3092)

BCHE4902 Grade Descriptors

Grade	Overall Course
	 Outstanding achievement of all the stated learning outcomes;
	 Demonstration of excellent research skills;
А	 Demonstration of excellent research attitude;
	 Demonstration of excellent research plan and/or outcome;
	 Excellent ability of problem solving;
	 Outstanding achievement of most of the stated learning outcomes;
	 Demonstration of very good research skills;
A-	 Demonstration of excellent research attitude;
	 Demonstration of very good research plan and/or outcome;
	 Very good ability of problem solving;
	 Substantial achievement of the stated learning outcomes;
	 Demonstration of good research skills;
В	 Demonstration of good research attitude;
	 Demonstration of good research plan and/or outcome;
	 Good ability of problem solving;
	 Fair to satisfactory achievement of the stated learning outcomes;
	 Demonstration of satisfactory research skills;
С	 Demonstration of satisfactory research attitude;
	 Demonstration of satisfactory research plan and/or outcome;
	 Satisfactory ability of problem solving;
	• Fair achievement of the essential parts of the stated learning
	outcomes;
D	 Demonstration of fair research skills;
D	 Demonstration of fair research attitude;
	 Demonstration of satisfactory research plan and/or outcome;
	Fair ability of problem solving;
	 Poor achievement of the stated learning outcomes;
	 Demonstration of poor research skills;
F	 Demonstration of poor research attitude;
	 Demonstration of poor research plan and/or outcome;
	 Poor ability of problem solving;
BCHE4903 Senior Experimental Project III (2018-19)

Course Description

In this course, students continue to work on and finish up the research project from BCHE4902. Relevant data analysis and conclusion formulation are performed after discussion with supervisors. A final report in the form of a manuscript and an oral presentation are assessed at the end of term for performance.

Learning Outcome

Students taken this course are expected to develop the following abilities:

- 1. Integrate the knowledge and skills learnt previously in other courses
- 2. Survey scientific literature relevant to their research project

3. Read scientific literature critically to identify the scientific questions or problems

- 4. Design independent research project to address the scientific questions
- 5. Acquire hands-on research techniques in conducting experiments
- 6. Develop problem-solving abilities
- 7. Develop data analysis and interpretation skills in a logical and scientific ways
- 8. Improve skills in scientific writing and oral presentation
- 9. Develop a sense of responsibility and term spirit

Course Syllabus

The students should continue to work on the research project from BCHE4902. Students should discuss the progress with their supervisors and submit a final report in the form of manuscript and present orally in the term end.

Assessment Scheme

Essays	40%
Presentation	40%
Other	20%

Required and Recommended Readings

Relevant reference materials will be provided by the supervisor.

Enrollment Requirements

Pre-requisite(s): BCHE3090 (or BCHE3092) & BCHE4902.

BCHE4903 Grade Descriptors

Grade	Overall Course
	Outstanding achievement of all the stated learning outcomes;
	 Demonstration of excellent research and critical thinking skills;
	 Demonstration of excellent research attitude;
٨	• Demonstration of excellent research planning and problem solving skills;
А	• Demonstration of excellent understanding of research methodologies and
	data analysis;
	 Demonstration of excellent scientific communication skills;
	Excellent research output;
	 Outstanding achievement of most of the stated learning outcomes;
	 Demonstration of excellent research and critical thinking skills;
	 Demonstration of excellent research attitude;
A-	 Demonstration of excellent research planning and problem solving skills;
Π-	 Demonstration of excellent understanding of research methodologies and
	data analysis;
	 Demonstration of excellent scientific communication skills;
	Very good research output;
	 Substantial achievement of the stated learning outcomes;
	 Demonstration of very good research and critical thinking skills;
	 Demonstration of very good research attitude;
	Demonstration of good to very good research planning and problem solving
В	skills;
	 Demonstration of good to very good understanding of research
	methodologies and data analysis;
	 Demonstration of very good scientific communication skills;
	Good to very good research output;
	 Fair to satisfactory achievement of the stated learning outcomes;
	 Demonstration of satisfactory to good research and critical thinking skills;
	 Demonstration of good research attitude;
	 Demonstration of satisfactory to good research planning and problem
С	solving skills;
	 Demonstration of satisfactory to good understanding of research
	methodologies and data analysis;
	 Demonstration of good scientific communication skills;
	 Satisfactory to good research output;

	• Fair achievement of the essential parts of the stated learning outcomes;
	• Demonstration of fair to satisfactory research and critical thinking skills;
	 Demonstration of satisfactory research attitude;
	• Demonstration of fair to satisfactory research planning and problem
D	solving skills;
	Demonstration of fair to satisfactory understanding of research
	methodologies and data analysis;
	 Demonstration of satisfactory scientific communication skills;
	Minimal research output;
	Poor achievement of the stated learning outcomes;
	 Demonstration of poor research and critical thinking skills;
	Demonstration of poor research attitude;
F	• Demonstration of poor to fair research planning and problem solving skills;
Г	• Demonstration of poor understanding of research methodologies and data
	analysis;
	 Demonstration of poor scientific communication skills;
	Poor research output;

Guidelines for LSCI4000 (Literature Research in Life Sciences)

生命科學文獻專題研究

Course Description:

Students, with the help of the supervisor, will find an interesting research topic in life sciences to perform a literature research, and critically assess the scientific basis of the conclusions drawn. Students will discuss regularly with a supervisor, summarize the research findings in an oral presentation and a written report.

學生將會在導師的指導下,找一個有關於生命科學的課題進行文獻研究,從以了解論 文所得之結論的科學依據。學生須定期與導師討論,並將研究總結作口頭簡報及提交 論文。

Course Syllabus:

Students, with the help of the supervisor, will find an interesting research topic in life sciences to perform a literature research. The students will first search for the relevant scientific literatures using online databases such as PubMed (www.pubmed.org). The scientific literatures should cover both reviews articles as well as <u>original research papers</u>. The students should understand the methodology of research described so that they can critically assess the experimental basis of the conclusions drawn in these papers. After reading a number of relevant papers in the selected topics, the students will summarize the research findings, critically analyze the information obtain and propose the way forward; platform and written presentations are required.

Learning Outcome:

The students will be able to:

- 1. find relevant scientific literature in life sciences
- 2. interpret and analyze the experimental data presented in the scientific literature
- 3. understand the research methodology
- 4. summarize the findings in the scientific literature, and present them to the peers
- 5. write a review article on a current research topic in life sciences

1. Oral presentation: 40%

Each student will have 15 minutes for presentation, and 5 minutes for discussion. The oral presentation will be graded according to the following criteria:

(1) **Content** (15%): Can the students demonstrate that they have provided an in-depth understanding of the topics they have chosen? (5%) Have they presented original research findings with relevant citations? (5%) Have they demonstrated that they understand the methodology of how these research findings are obtained? (5%)

(2) Critical Thinking (10%): Do the students understand the limitation of the research methodology they presented? (4%) Can the students formulate alternative interpretation of

the experimental data? (3%) Can the students provide insights into future direction of research? (3%)

(3) **Presentation Skill** (10 %) Are the slides clear and of good quality? (5%) Is the presentation in logical flow and well organized? (5%)

(4) **Discussion** (5 %): Can the student respond well to the questions raised (2.5%), and demonstrate that they have a thorough understanding of the topic presented? (2.5%)

(5) Time management: 1 mark will be deducted per minute of over-time.

(6) **Participation in Q&A bonus**: In each Q&A section, the students are encouraged to ask questions. The students will receive 2 marks for each excellent question asked, and 1 mark for good question. The maximum bonus marks a student can obtain is 5.

Attendance of the oral presentation

For students who are late for their presentations, no extra time will be compensated (e.g. if s/he is late for 10 minutes, the maximum time allowed for his/her presentation will be 20 minutes; if s/he is late for 20 minutes, the time allowed will be 10 minutes; if s/he is late for 30 minutes or more, it assumes that s/he gives up his/her presentation). One sub-grade (e.g. A- to B+) will be deducted when a student fails to attend his/her whole day (both morning and afternoon sessions) oral presentation session.

Score Sheet:

Items	Descriptions	Marks
Content (15%)	 Can the student demonstrate that s/he has provided an indepth review on the topics s/he chosen? (5%) Has s/he presented original research findings? (5%) Has s/he demonstrated that they understand the methodology of how these research findings are obtained? (5%) 	
Critical Thinking (10%)	 Does the student understand the limitation of the research methodology they presented? (4%) Can the student formulate alternative interpretation of the experimental data? (3%) Can the student provide insights into future direction of research? (3%) 	
Presentation Skill (10%)		
Discussion (5%)	Can the student respond well to the questions raised, and demonstrate that s/he has a thorough understanding of topic presented?	

2. Written Report (40%)

The students are required to submit a written report on the topics they have selected. The detailed format should follow those described for the Annual Reviews. You should refer to the "Author Handbooks" at the web page of Annual Reviews

LSCI4000 (2019-2020)

(<u>http://www.annualreviews.org/page/authors/author-instructions/preparing/handbooks</u>). <u>Each</u> written report must contain at least 5,000 words and no more than 8,000 words; around 8 to 10 figures/tables/diagrams must be included. Any experimental data or other published information must be cited in accordance to the University guidelines on Honesty in Academic Work.

In brief, the manuscript should contain the following components:

- 1. Title
- 2. Abstract (within 400 words)
- 3. Keywords
- 4. Graphical Abstract (optional)
- 5. List of abbreviations and acronyms
- 6. Introduction (background), with aims of the paper at the end
- 7. Contents with listing of section headings and page numbers
- 8. Main text divided into section headings
- 9. Conclusions and future perspectives
- 10. References

The length of the review article should be around ~ 50 A4 pages (12pt fonts; top/bottom/right/left margin = 2.5/2.5/2.5/3.0 cm; double-line spacing)

The review article will be graded according to:

Items	Descriptions	Marks
Content (15%)	 Can the student demonstrate that s/he has provided an in-depth review on the topics s/he chosen? (5%) Has s/he presented original research findings? (5%) Has s/he demonstrated that they understand the methodology of how these research findings are obtained? (5%) 	
Critical Thinking (10%)	 Does the student understand the limitation of the research methodology they presented? (4%) Can the student formulate alternative interpretation of the experimental data? (3%) Can the student provide insights into future direction of research? (3%) 	
Presentation Skill (10%)	 Is the report clear and nicely written? (5%) Is the presentation in logical flow and well organized? (5%) 	

Late submission of the written report

One sub-grade (e.g. A- to B+) will be deducted for each day of late-submission.

3. Supervisor marks: 20%

The supervisors will give marks according to their students' attitudes and engagement.

Meeting with supervisor

The students are required to meet their supervisors <u>at least three times</u> within a term. Marks will be deducted from the supervisor marks if the students fail to do so <u>(Note: failure to meet supervisors as required may lead to failure of the course)</u>. It is the responsibility of the students to take the initiative to make appointment with their supervisor. The students should plan your meeting schedule ahead, and 'supervisor cannot be reached' is not an excuse for failure to meet this requirement.

As a general guideline, in the 1^{st} meeting (preferable in the first month of the term), the students are expected to discuss with their supervisors on potential topics of literature reviews. The students should then perform a preliminary survey of literatures and finalized the reviews topics with the supervisor in the 2^{nd} meeting. In the 3^{rd} meeting, the students should discuss with the supervisor on the final outline of the oral presentation and draft the abstract of the presentation.

Meeting Date	Meeting check-list (completed by supervisor)	Supervisor Signature
September or January	 Has the student discussed the literature research topic with you? Was the student well prepared for the discussion with you? Other comments 	 Requirement met Requirement not met Signature:
September or January	 Has the student discussed the plan of the final year project with you? Has the student taken an initiative to work on the final year project? Has the student reasonably read the required books? Other comments 	 Requirement met Requirement not met Signature:
October or February	 Has the student discussed the outline of the oral presentation with you? Has the student discussed the abstract of the oral presentation with you? Has the student reasonably read the required books? Other comments 	 Requirement met Requirement not met Signature:
November or March	 Has the student reasonably read the required books? Has the student rehearsed the oral presentation with you? Others, please specify 	 Requirement met Requirement not met Signature:
November or March	 Has the student discussed the manuscript with you? Has the student gone through any sample 	 Requirement met Requirement

 manuscripts of your former students? □ Has the student let you preview the manuscript? □ Other comments 	not met Signature:

Required reading for generic skill development:

Johnson & Scott. (2014). Study and communication skills for the biosciences, 2nd ed. Oxford: Oxford University Press. (QH315.J64 2014)

Blann, AD. (2015). Data handling and analysis. Oxford: Oxford University Press. (WA950.B5853 2015)

Grade Descriptors

Grade	Overall Course
А	 Outstanding achievement of all the stated learning outcomes; Demonstration of excellent critical thinking skills Demonstration of excellent understanding of research methodologies; Demonstration of excellent understanding of data analysis and interpretation; Demonstration of excellent scientific communication skills;
A-	 Excellent contents of literature research; Outstanding achievement of most of the stated learning outcomes; Demonstration of very good critical thinking skills Demonstration of very good understanding of research methodologies; Demonstration of very good understanding of data analysis and interpretation; Demonstration of very good scientific communication skills; Very good contents of literature research;
В	 Substantial achievement of the stated learning outcomes; Demonstration of good critical thinking skills Demonstration of good understanding of research methodologies; Demonstration of good understanding of data analysis and interpretation; Demonstration of good Scientific communication skills; Good contents of literature research;
С	 Fair to satisfactory achievement of the stated learning outcomes; Demonstration of satisfactory critical thinking skills Demonstration of satisfactory understanding of research methodologies; Demonstration of satisfactory understanding of data analysis and interpretation; Demonstration of satisfactory scientific communication skills; Satisfactory contents of literature research;
D	 Fair achievement of the essential parts of the stated learning outcomes; Demonstration of fair critical thinking skills Demonstration of fair understanding of research methodologies; Demonstration of fair understanding of data analysis and interpretation; Demonstration of satisfactory scientific communication skills; Fair contents of literature research;
F	 Poor achievement of the stated learning outcomes; Demonstration of poor critical thinking skills Demonstration of poor understanding of research methodologies; Demonstration of poor understanding of data analysis and interpretation; Demonstration of poor scientific communication skills; Poor contents of literature research; Plagiarized materials found.

Research Ethics

In compliance with the University's Guidelines on Research Ethics and Policies, graduates of SLS are encouraged to complete the online research ethics training (<u>https://www.research-ethics.cuhk.edu.hk/orktsResearch/</u>) and obtain the certificate awarded.

Plagiarism

The University adopts a policy of zero tolerance on plagiarism. Any related offence will lead to disciplinary action including termination of studies at the University. All students must also submit a softcopy of the manuscript to the Veriguide System at <u>http://www.cuhk.edu.hk/veriguide</u>. A signed veriguide form should be submitted together with the report.

The students should visit <u>http://www.cuhk.edu.hk/policy/academichonesty/</u> for the CUHK's guideline for plagiarism. In particular, the Appendix A and B of the web page give detailed examples on the proper use of source material. "I didn't know this is plagiarism" is not an acceptable excuse. <u>Using other people</u> to write the report for you is also a fraud and unacceptable.

School of Life Sciences Senior Group Project Guidelines

Course Code	Term	Course Description
4911 Group Research in Life Sciences I	Summer Session (2 units)	Students form a group to carry out an independent laboratory/non-laboratory-based research project provided by the supervisor or jointly decided with the group. To fulfill the course requirements, students are required to discuss their progress with their supervisors regularly and submit and present a research proposal with some preliminary data .
4912 Group Research in Life Sciences II	1st Term (2 units)	Group of students carrying out an independent laboratory/non-laboratory-based research project. Students are required to discuss their progress with their supervisor(s) regularly and submit a revised proposal and progress report towards the end of the term. The progress report should highlight the goals of the project and the achievements accomplished. If difficulties are encountered, the progress report should suggest how to tackle the problems.
4913 Group Research in Life Sciences III	2nd Term (2 units)	Students continue to work on and complete the research project from 4912. Student should discuss with their supervisor(s), analyze relevant data, compare the data obtained with other similar studies, and formulate conclusion. Students should submit a final report in the form of a manuscript and give an oral presentation before the end of the term.

LEARNING OUTCOMES

- Identify a life science topic that has an impact on the society of Hong Kong and/or neighboring regions
- Learn to trust and respect their groupmates, and understand the importance of shared responsibility and good collaboration.
- Integrate both knowledge and skills learnt previously in other major courses.
- Survey articles and/or scientific literature relevant to their research project.
- Read scientific literature critically to identify the scientific questions or problems and formulate a working hypothesis.
- Design surveys and/or independent research experiments to address the scientific questions.
- For lab-based project, acquire hands-on and bench-top research techniques in conducting experiments.
- For non-lab-based project, acquire skills that aligned to their project topics such as: public engagement, educational development, machine learning, etc.
- Improve problem-solving and independent research abilities.
- Analyze and interpret data in a logical, professional, and scientific way.
- Foster their skills in scientific writing and oral presentation.

COURSE ARRANGEMENT

Three courses are group-based STOT courses. School will provide a list of group final year project for students' selection at the end of February. The students are required to approach the professor(s) on the projects that you are interested and submit a selection form indicating a maximum of three project titles, in order of priority, and the results will be released in mid-April. Students are required to perform literature review on the background of the research topic, identify the scientific question(s) the group wants to address, and understand how the study will impact the society. With the guidance of the supervisor, the group will design different tasks that might include but not limited to market research, survey, experiments of different approaches, to address the questions. For students enrolling in 4911, you will have to submit a <u>research proposal</u> by late August with some preliminary data. In the first term, you will conduct an oral presentation and submit the <u>final report (4913)</u>.

COURSE ASSESSMENT OF 4911

PARTICIPATION (20%, INDIVIDUAL) - BY GROUPMATES

Students are expected to share the responsibility and workload in a fair manner. Students will assess each other's participation and contribution; and provide constructive feedback to each other.

WORK PERFORMANCE (40%, GROUP) - BY SUPERVISOR

Students are expected to meet their supervisor(s) regularly to discuss the progress of the project. The supervisors will grade the students according to their attitude and performance in the project.

PROJECT PROPOSAL (40%, GROUP) - BY 2 MARKERS INCLUDING SUPERVISOR

The proposal together with a signed VeriGuide report should be submitted to <u>https://elearn.cuhk.edu.hk/</u> under the "course assignment" in blackboard site of LSCI 4911 before the deadline in <u>30 July 2021 (Friday) 23:59.</u> The files should be in PDF format. The documents should NOT be locked or protected. <u>One sub-grade (e.g. A- to B+) will be deducted for each day of late-submission.</u>

Meeting Date	Meeting check-list (completed by supervisor)	Supervisor Endorsement
Week 1 to 2	 Has the group discussed the research topic with you? Was the group well prepared for the discussion with you? Other comments: 	 Requirement met Requirement not met Signature:
Week 3 to 4	 Has the group discussed the plan of the research project with you? Has the group carried out adequate literature research for the research project? Other comments: 	 Requirement met Requirement not met Signature:
Week 5 to 6	 Has the group reasonably acquired new research skills relevant to the project? Has the group made reasonable progress in the project? Other comments: 	 Requirement met Requirement not met Signature:
Week 7 to 8	 Has the group demonstrated any problem solving skills throughout the project? Has the group reasonably worked out any useful results for the project? Others comments: 	□ Requirement met □ Requirement not met Signature:
Week 9 to 10	 Has the group reasonably demonstrated any project management skills? Has the group demonstrated a good attitude and perseverance throughout the project? Other comments: 	 Requirement met Requirement not met Signature:

MEETING THE SUPERVISOR

		Criteria including
Project objective(s) and	•	Clear title showing the main theme of this project
impact to the society,	•	Well-defined objectives and impact to the society
including abstract (10%)		Informative abstract
	•	Comprehensible to a non-specialist
Background of research		Relevant literature review
(10%)	•	Capability to integrate proposed research with existing knowledge
<u> </u>	•	Elaborate any unpublished work done before
	•	Whether the proposed research adequately address the objectives
Research plan and		Proper hypothesis and prediction
methodology (15%)		Adequate and precise data analysis
		Suggestion of alternative methods if problems encountered
		Include a project milestone-plan in the research plan
		Correct format, (12pt fonts; top/bottom/right/left margin =
Organization style and		2.5/2.5/2.5/3.0 cm; double-line spacing)
Organization, style and		Grammar & word usage
format (5%)		Conciseness and clarity
		Proper use of tables, figures and legends (if applicable)
	•	Proper citations in correct style

GRADE DESCRIPTOR

Grade	Overall Course		
	• Outstanding achievement of all the stated learning outcomes;		
	• Research plan with excellent social relevance;		
А	• Demonstration of excellent research skills;		
	• Demonstration of excellent research attitude;		
	• Demonstration of excellent research plan and/or outcome;		
	Demonstration of excellent communication skills and teamwork.		
	• Outstanding achievement of most of the stated learning outcomes;		
	• Research plan with very good social relevance;		
A-	• Demonstration of very good research skills;		
	• Demonstration of excellent research attitude;		
	 Demonstration of very good research plan and/or outcome; 		
	• Demonstration of excellent communication skills and teamwork.		
	• Substantial achievement of the stated learning outcomes;		
	• Research plan with good social relevance;		
В	• Demonstration of good research skills;		
	• Demonstration of good research attitude;		
	• Demonstration of good research plan and/or outcome;		
	• Demonstration of very good communication skills and teamwork.		
	• Fair to satisfactory achievement of the stated learning outcomes;		
	• Research plan with satisfactory to good social relevance;		
С	• Demonstration of satisfactory or fair research skills;		
	• Demonstration of satisfactory or fair research attitude;		
	• Demonstration of satisfactory or fair research plan and/or outcome;		
	• Demonstration of good communication skills and teamwork.		
	• Fair achievement of the essential parts of the stated learning outcomes;		
	• Research plan with satisfactory social relevance;		
D	• Demonstration of little research skills;		
	• Demonstration of little research attitude;		
	 Demonstration of satisfactory research plan and/or outcome; 		
	• Demonstration of satisfactory communication skills and teamwork.		

Grade	Overall Course
	• Poor achievement of the stated learning outcomes;
	• Research plan with poor social relevance;
F	• Demonstration of poor research skills;
Г	• Demonstration of poor research attitude;
	• Demonstration of poor research plan and/or outcome;
	• Demonstration of poor communication skills and teamwork;
	Plagiarized materials found.

<20 A4 pages (12pt fonts; top/bottom/right/left margin = 2.5/2.5/2.5/3.0 cm; double-lined spacing)

<u>Title page</u>

The title should identify the content of the report. Names and student numbers of all group members, programme affiliation and the date of submitting the report are placed below the title. Please specify the total number of words in your proposal.

<u>Abstract</u>

Briefly state your project, background, social relevance and justification (or significance), your preliminary results and on-going work, in 300 -400 words, with several key words.

Project objectives and long-term impact (maximum 1 A-4 page)

State the purpose of the proposed investigation, identify the key issues and problems being addressed, and state the possible outcome of the research project in terms of its significance, social relevance and impact. You can use point form where appropriate.

Background of research (maximum 4 A-4 pages, including references)

Summarize and provide key references on related work, including previous and alternative approaches to the problem. State the working hypothesis clearly to justify the aims of the project.

Research plan and methodology (maximum 3 A-4 pages, including key references)

Describe your research plan and the special techniques that you will be used in your study. There is no need to state the details of the procedures, but references are needed.

Figures or tables

A maximum of three non-text pages of attached diagrams, photos, charts, and table etc., if any. Captions are inserted together with the figure and table. Figures must be properly labelled, with figure title and legends at bottom. Table titles are on top of the table. Flow chart showing the graphical abstract of the project would be useful but not a must.

References (maximum 3 A-4 pages)

This is the list of references actually cited in your proposal. It is not a "bibliography," or enumeration of the literature on a topic. References should be cited according to the format used in the examples below and arranged in alphabetical order. Be consistent with the format of the references: The names and initials of the author(s), the year, the full title, the abbreviated name of the journal, followed by the volume and page numbers.

Format for article references

France, S.C., Tachino, N., Duda, T.F., Jr., Shleser, R.A., and Palumbi, S.R. 1999. Intraspecific genetic diversity in the marine shrimp *Penaeus vannamei*: multiple polymorphic elongation factor- 1α loci revealed by intron sequencing. *Marine Biotechnology* 1: 261-268.

[FirstAuthorLastName, F.M., Second, F.M., Etc, F.M., and Last, F.M. Year. Article title in full. *Full Name of the Journal* Volume: pages.] (Remark: issue number of a volume is not required)

Format for book section references

Dent, D.R. 1993. The use of *Bacillus thuringiensis* as an insecticide. *In* Jones, D.G. (ed.) *Exploitation of Microorganisms*, pp. 19-37. Chapman and Hall, London.

[FirstAuthorLastName, F.M., Second, F.M., Etc, F.M., and Last, F.M. Year. Article title in full. *In* Editor1, F.M. and Editor2, F.M. (eds.) *Book Name in Full (edition if any)*. pages. Publisher, City.]

Format for whole book references

Simpson, B.B. and Ogorzaly, M.C. 1995. *Plants in Our World (2nd ed.)*. McGraw-Hill, New York. [FirstAuthorLastName, F.M., Second, F.M., Etc, F.M., and Last, F.M. (eds. to specify editors) Year. *Book Name in Full (edition if any)*. pages. Publisher, City.]

COURSE ASSESSMENT OF 4912

PARTICIPATION (20%, INDIVIDUAL) - BY GROUPMATES

Students are expected to share the responsibility and workload in a fair manner. Students will assess each other's participation and contribution; and provide constructive feedback to each other.

WORK PERFORMANCE (40%, GROUP) - BY SUPERVISOR

Students are required to meet with the supervisor regularly to report the progress on a regular basis. The group should present the summarized data and future research plan to their supervisor in PowerPoint format before the end of term 1.

PROGRESS REPORT (40%, GROUP) - 2 MARKERS INCLUDING SUPERVISOR

The progress report together with the signed VeriGuide report should be submitted to <u>https://elearn.cuhk.edu.hk/</u> under the course assignment in 4912 on or before <u>3 December 2021</u> (Friday), 23:59. One sub-grade (e.g. A- to B+) will be deducted for each day of late-submission.

Meeting Date	Meeting check-list (completed by supervisor)	Supervisor Endorsement
September	 Has the group demonstrated reasonable commitment to the project? Has the group demonstrated reasonable time management skills for the project? Has the group made reasonable progress in the project? Other comments: 	 Requirement met Requirement not met Signature:
October	 Has the group demonstrated reasonable commitment to the project? Has the group demonstrated reasonable time management skills for the project? Has the group made reasonable progress in the project? Other comments: 	 Requirement met Requirement not met Signature:
November	 Has the group demonstrated reasonable commitment to the project? Has the group demonstrated reasonable time management skills for the project? Has the group made reasonable progress in the project? Other comments: 	 Requirement met Requirement not met Signature:
December	 Has the group demonstrated reasonable commitment to the project? Has the group demonstrated reasonable time management skills for the project? Has the group made reasonable progress in the project? Other comments: 	 Requirement met Requirement not met Signature:

MEETING THE SUPERVISOR

	Criteria including
Project objective(s) and impact to the society, including abstract (10 %)	 Well-defined objectives and impact to the society Significance of the proposed research Abstract informative with background, justification, experiments, results obtained, and perspectives Writings comprehensible to a non-specialist
Background of research (10 %) Research plan, methodology, and data analysis (15 %)	 Relevant up-to-date literature review Citations with other related research Capability to integrate proposed research with existing knowledge Elaborate any unpublished or collaborative work done here Whether the proposed research adequately address the objectives Proper working hypothesis and prediction Adequate and precise data analysis Suggestion of alternative methods if problems encountered
Organization, style and format (5 %)	 Include a project milestone-plan in the research plan Conciseness and clarity Use of tables, figures and legends (if applicable) Citations and references in correct style Correct format, i.e., font size in 12, double-line spacing and top/bottom/right/left margin = 2.5/2.5/2.5/3.0 cm Grammar & usage including punctuation, spelling, correct grammar, word usage, etc.

GRADE **D**ESCRIPTOR

Grade	Overall Course
	• Outstanding achievement of all the stated learning outcomes;
	• Research plan with excellent social relevance;
	• Demonstration of excellent research skills;
	• Demonstration of excellent research attitude;
А	 Demonstration of excellent research plan and/or outcome;
	• Demonstration of excellent communication skills and teamwork.Excellent ability of problem solving;
	• Able to show quantitative analyses of the data obtained:
	• Quality similar to a brief communication style of research paper.
	• Outstanding achievement of most of the stated learning outcomes;
	• Research plan with very good social relevance;
	• Demonstration of very good research skills;
A-	• Demonstration of excellent research attitude;
	• Demonstration of very good research plan and/or outcome;
	• Demonstration of excellent communication skills and teamwork. Able to show
	quantitative analyses of the data obtained;
	 Very good ability of problem solving.
В	 Substantial achievement of the stated learning outcomes;
	 Research plan with good social relevance;
	 Demonstration of good research skills;
	 Demonstration of good research attitude;
	 Demonstration of good research plan and/or outcome;
	 Demonstration of very good communication skills and teamwork;
	• Able to show quantitative analyses of the data obtained;
	Good ability of problem solving.
C	• Fair to satisfactory achievement of the stated learning outcomes;
С	 Research plan with satisfactory to good social relevance;
	• Demonstration of satisfactory or fair research skills;

Grade	Overall Course
	• Demonstration of satisfactory or fair research attitude;
	 Demonstration of satisfactory or fair research plan and/or outcome;
	 Demonstration of good communication skills and teamwork;
	• Satisfactory ability of problem solving.
	• Fair achievement of the essential parts of the stated learning outcomes;
	• Research plan with satisfactory social relevance;
_	• Demonstration of poor research skills;
D	• Demonstration of poor research attitude;
	• Demonstration of satisfactory research plan and/or outcome;
	• Demonstration of satisfactory communication skills and teamwork;
	• Fair ability of problem solving.
	Poor achievement of the stated learning outcomes;
	• Research plan with poor social relevance;
	• Demonstration of poor research skills;
F	• Demonstration of poor research attitude;
-	• Demonstration of poor research plan and/or outcome;
	• Poor ability of problem solving;
	• Demonstration of poor communication skills and teamwork;
	Plagiarized materials found in the report submitted.

INSTRUCTIONS FOR PROGRESS REPORT

<30 A4 pages (12pt fonts; top/bottom/right/left margin = 2.5/2.5/2.5/3.0 cm; double-lined spacing)

<u>Title page</u>

The title should identify the content of the report. Names and student numbers of all group members, programme affiliation and the date of submitting the report are placed below the title. Please specify the total number of words in your report.

Abstract

Briefly state your project background, rationale, social relevance, your results and on-going work, in no more than 400 words. Five key words should be included.

Introduction (maximum 3 A-4 pages)

Post your questions and state the issues being addressed and give a brief resume of past information bearing on your work. Background of your research should provide up-dated literatures. Explained what have been done before and state the significance of your project. A statement of specific objectives and working hypothesis of your project will be very useful.

Materials and Methods (maximum 3 A-4 pages)

Describe your general approach and any special techniques used in your study. Many students tend to put far too much into this section; restrict it to basic methodology with relevant citations. If you used a standard instrument (such as a thermocycler), it suffices merely to say so, but if you have devised a new and special method, describe it adequately. The key is to ensure that other researchers can repeat your data using the same materials and methods described in your report.

Results (maximum 3 A-4 pages)

Provide a brief rationale on why the experiment/survey/study is important for the project and state concisely what your team has performed, each followed by its results. The amount of detail you include should be consonant with and 'directed by' the aim of your project, which should be kept in mind at all times. In this section, be sure to include <u>only results obtained by your team</u>. Suggest alternative ways to solve the problems being encountered.

Your team can decide if you want to leave comments on the results for a standalone "Discussion" section; or your team wants to integrate the comments and discussion here and change the section to "Results and Discussion". In general, past sense should be used to describe the actual procedures done and data obtained.

Please highlight the achievements you have made in the table of your research milestone-plan.

Discussion and On-going work (maximum 3 A-4 pages, including key references)

Here you discuss the implications, speculations and significance of your results. Be sure to distinguish between speculations and your factual observations. If the results obtained are not as anticipated, explain why and propose alternatives to solve existing problems.

In general, past tense should be used when citing experimental data and present tense should be used when you describe a fact or a general concept. You will need to state specifically the work your team is performing or planning to do and the results you anticipate in the second term to achieve the objectives of your proposed study.

References (maximum 3 A-4 pages)

Format similar to the proposal, but the numbers of references are expected to be doubled, as you need to discuss some of your preliminary data, and update your literature review on the research topic chosen.

Progress report assessments:

The progress report will be graded according to Abstract and Objective (5%); Background of the Research (8%); Design and Quality of the Research (10%); Conclusion/Interpretation of Results and Discussion (12%); Presentation or writing Skill (5%).

COURSE ASSESSMENT OF 4913

PARTICIPATION (10%, INDIVIDUAL) - BY GROUPMATES

Students are expected to share the responsibility and workload in a fair manner. Students will assess each other's participation and contribution; and provide constructive feedback to each other.

WORK PERFORMANCE (20%, GROUP) - BY SUPERVISOR

Students are expected to meet their supervisor(s) regularly to discuss the progress of the project. The supervisors will grade the students according to their attitude and performance in the project.

FINAL REPORT (35%, GROUP) - BY TWO MARKERS INCLUDING SUPERVISOR

Date of submission: 22 April 2022 (Friday), 23:59.

The final report together with your signed VeriGuide report should be submitted to <u>https://elearn.cuhk.edu.hk/</u> under the course assignment in 4903. One sub-grade (e.g. A- to B+) will be deducted for each day of late-submission.

ORAL PRESENTATION (35%, GROUP)- BY TWO MARKERS EXCL. SUPERVISOR

Tentatively, the oral presentation will be held on the last Saturday in 2nd term or the make-up class days; the exact date and time will be confirmed later.

Meeting Date	Meeting check-list (completed by supervisor)	Supervisor Endorsement
January	 Has the team demonstrated reasonable commitment to the project? Has the team demonstrated reasonable time management skills for the project? Has the team made reasonable progress in the project? Other comments 	 Requirement met Requirement not met Signature:
February	 Has the team demonstrated reasonable commitment to the project? Has the team demonstrated reasonable time management skills for the project? Has the team made reasonable progress in the project? Other comments 	 Requirement met Requirement not met Signature:
March/April	 Has the team discussed the manuscript with you? Has the team gone through any sample manuscripts of your former students? Has the team let you preview the manuscript? Other comments 	 Requirement met Requirement not met Signature:
April	 Has the s team let you preview the abstract of the oral presentation? Has the team rehearsed the oral presentation with you? Others, please specify 	 Requirement met Requirement not met Signature:

MEETING THE SUPERVISOR

	Criteria including
Title, Abstract and	• Clear title showing the main theme of your research
·	• Well-defined objectives
Objectives	Informative abstract
(7%)	Comprehensible to a non-specialist
Background of research	• Relevant up-to-date literature review
e	Citations with other related research
(7 %)	Capability to integrate proposed research with existing knowledge
	• Elaborate any unpublished or collaborative work done here
	Proper research plan and methodology
Research plan,	Capable of carrying out independent research
methodology, results and	Reasonable data with relevant statistical analysis
data analysis, discussion	• Understand the limitations of the research methods
(16 %)	· Critical comments on the results obtained and how they provide new
	insights
	· Correct format, i.e., font size in 12, Times New Roman, single-line
Organization style and	spacing and 1 inch in margin
Organization, style and	Grammar & word usage
format	Conciseness and clarity
(5%)	• Proper use of punctuation, tables, figures and legends
	Proper citations in correct style

ORAL PRESENTATION ASSESSMENT SCHEME

Criteria

Content (15%)

- ✓ Hypothesis and objective
- \checkmark Social relevance and impact
- ✓ Logical concept and argument
- \checkmark Design and quality of the research
- \checkmark Findings interpretation and conclusions
- ✓ Appropriate for audience with no or limited background knowledge of the presented topic

Organization (10%)

- \checkmark Group member has equal share of preparation and presentation
- \checkmark Suitable pace and tone
- \checkmark Effective use of visual aids
- \checkmark Structure and organization (Beginning, middle and end)

Communication (10%)

- \checkmark Confidence in presentation
- ✓ Fluency in use of English
- ✓ Appropriate body language, i.e., eye contact
- \checkmark Interaction with audience
- ✓ Discussion
- \checkmark Response to the question raised

INSTRUCTIONS FOR FINAL REPORT WRITING

The students should describe their research in a concise manner, and the manuscript should generally be **within 6,000 – 8,000 words** (12 pt fonts; top/bottom/right/left margin = 2.5/2.5/2.5/3.0 cm; double-lined spacing).

You should read the "Author Guidelines" for the PLoS One (<u>http://www.plosone.org/static/guidelines.action</u>) and sample (<u>http://journals.plos.org/plosone/s/file?id=wjVg/PLOSOne formatting sample main body.pdf</u>) for reference.

<u>Title page</u>

The title should identify the content of the report. Your name, student number and the date of submitting the report are placed below the title. Please specify the total number of words in your report.

<u>Abstract</u>

Describe the background and main objective(s) of your study, explain how the study done and summarize the results, conclusions and their significance, in no more than 400 words

Introduction (around 5 pages)

In this section you should provide background information and state the problem being addressed and explain the importance. A statement of specific objectives and hypothesis of your project will be very useful.

Materials and Methods

Describe your general approach and any special techniques and/or protocols used in your study. You should provide enough details (but not showing any procedures in point forms) to allow other scientists can repeat your data using the same materials and methods described in your report. Relevant citations are important.

<u>Results</u>

State concisely what you did in individual experiments, each followed by its results. The amount of detail you include should be consonant with and 'directed by' the aim of your project, which should be kept in mind at all times. In this section, be sure to include only the experimental results obtained on your own, with relevant statistical analyses.

Leave comments on the results for the Discussion. In general, past sense should be used to describe the actual procedures done and data obtained.

Discussion

Here you compare your work with that of previous workers, and bring out any implications, speculations and significance about your project. Be sure to distinguish between speculations and your factual observations. In general, past tense should be used when citing experimental data and present tense should be used when you describe a fact or a general concept.

<u>Conclusion (optional)</u> <u>Acknowledgements</u> <u>Supporting information- Figures and tables with legends</u> <u>References (maximum 3 A-4 pages)</u>

GUIDELINES FOR ORAL PRESENTATION

Students will present their research findings in an oral presentation. Each student will have 15 **minutes** for presentation, including **3-5 minutes** for discussion. The oral presentation will be graded according to the following criteria:

(1) **Hypothesis and Objective** (5%): How well the students define and explain the significance of their scientific questions they want to address in their research?

(2) **Design and Quality of the Research** (10%): Did the research methodology used by the students adequately address the scientific questions? Did the students include the appropriate control experiments? Are the results technically sound? Did the students perform the research well?

(3) **Conclusions/Interpretation of Results** (10%): Do the results support the conclusion? Are there any problems of misinterpretation? Did the students consider any alternative interpretation of their results?

(4) Presentation Skill (5%) Is the presentation clear and well organized with a logical flow?

(5) **Discussion** (10%): How well the students discuss the research findings of related study? Can the students respond well to the questions raised, and demonstrate that they have a thorough understanding of their research topic?

(6) **Time management**: Did the presentation finish in 15 minutes? One mark will be deducted for each minute of overrun.

(7) **Participation in Q&A (bonus):** In each Q&A section, the students are encouraged to ask questions.

(8) **Attendance:** Students are required to attend a minimum number of presentations (to be specified later) of the other students.

Grade	Overall Course
	• Outstanding achievement of all the stated learning outcomes;
	 Demonstration of excellent research and critical thinking skills; Demonstration of excellent research attitude;
	• Demonstration of excellent research attitude;
Α	Demonstration of excellent research planning and problem-solving skills
	 Demonstration of excellent understanding of research methodologies and quantitative data analysis;
	• Demonstration of excellent scientific communication skills;
	• Excellent research output; the quality is up to a standard of a research
	paper manuscript
	• Outstanding achievement of most of the stated learning outcomes;
	• Demonstration of excellent research and critical thinking skills;
	• Demonstration of excellent research attitude;
A-	• Demonstration of excellent research planning and problem-solving skills
	• Demonstration of excellent understanding of research methodologies and quantitative data analysis;
	• Demonstration of excellent scientific communication skills;
	• Very good research output;
В	Substantial achievement of the stated learning outcomes;

GRADE DESCRIPTOR

	• Demonstration of very good research and critical thinking skills;
	• Demonstration of very good research attitude;
	• Demonstration of good to very good research planning and problem- solving skills;
	• Demonstration of good to very good understanding of research
	methodologies and sufficient data analysis;
	• Demonstration of very good scientific communication skills;
	• Good to very good research output;
	• Fair to satisfactory achievement of the stated learning outcomes;
	 Demonstration of satisfactory to good research and critical thinking skills;
	• Demonstration of good research attitude;
С	• Demonstration of satisfactory or fair to good research planning and problem- solving skills;
	• Demonstration of satisfactory or fair to good understanding of research
	methodologies and data analysis;
	• Demonstration of good scientific communication skills;
	• Satisfactory to good research output;
	• Fair achievement of the essential parts of the stated learning outcomes;
	• Demonstration of fair to satisfactory research and critical thinking skills;
	• Demonstration of fair research attitude;
_	• Demonstration of fair to satisfactory research planning and problem-
D	solving skills;
	• Demonstration of fair to satisfactory understanding of research
	methodologies and data analysis;
	• Demonstration of little scientific communication skills;
	Minimal research output;
	• Poor achievement of the stated learning outcomes;
	• Demonstration of poor research and critical thinking skills;
	• Demonstration of poor research attitude;
	• Demonstration of poor to fair research planning and problem solving
F	skills;
	• Demonstration of poor understanding of research methodologies and data analysis;
	 Demonstration of poor scientific communication skills;
	 Poor research output; plagiarized materials found in the report.
	 Plagiarized materials found.
	- Taganizou materiais round.

ACADEMIC HONESTY:

According to University regulations, students must submit an electronic version of their assignment to VeriGuide system for the purpose of checking for possible plagiarism. Read the University's policies on plagiarism carefully and do not plagiarize! CUHK has adopted a policy of zero tolerance for plagiarism. Instructors will send all suspected cases of plagiarism directly to the disciplinary committee for investigation. In the case of group report, plagiarism will affect all partners! Students submitting assignment done by third party is also a serious misconduct and regarded as fraud or academic dishonesty. The updated Procedures are available at the University's website "Honesty in Academic Work: A Guide for Students and Teachers" (http://www.cuhk.edu.hk/policy/academichonesty/).

Students please note the aforementioned marking scheme, grade descriptors, academic honesty principle and the university penalty guideline are all applicable to this course. General university regulations are available on line: <u>http://www.res.cuhk.edu.hk/en-gb/general-information/university-regulations</u>. <u>Work or writings done by others could not be used as your work or writings in the report, otherwise it is considered as scientific fraud and not acceptable.</u>